Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Jul;99(1):263–268. doi: 10.1128/jb.99.1.263-268.1969

Sequential Entry of Transforming Markers into Neisseria meningitidis After Chromosome Alignment

Kaare Jyssum 1
PMCID: PMC249997  PMID: 4979442

Abstract

The kinetics of appearance of transformants as a function of time of exposure to deoxyribonucleic acid (DNA) was examined in Neisseria meningitidis. Incubation with chloramphenicol for as long as 2 hr, which probably leads to chromosome alignment, resulted in augmentation of the lag period before the appearance of the first transformants. The lag periods thus found were dependent upon the marker tested. This permitted the construction of a time map according to the lag periods observed for individual markers. This map was in general agreement with the chromosome map of the recipient strain as determined by marker frequency analysis. Transformation of recipient cells with chromosomes aligned by growth to the stationary phase showed the same type of increased lag in the appearance of transformants before the logarithmic phase of growth had again been reached. These results support the assumption that the nature of the marker accepted by a recipient cell corresponds to the marker present at the replication point of the chromosome. In the absence of DNA and protein synthesis, the uptake of one marker seems to be successively followed by other markers in a linear order determined by the chromosome of the recipient cell.

Full text

PDF
263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer L. J., Landman O. E. Transport of donor deoxyribonucleic acid into the cell interior of thymine-starved Bacillus subtilis with chromosomes arrested at the terminus. J Bacteriol. 1969 Jan;97(1):174–181. doi: 10.1128/jb.97.1.174-181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodmer W. F. Recombination and integration in Bacillus subtilis transformation: involvement of DNA synthesis. J Mol Biol. 1965 Dec;14(2):534–557. doi: 10.1016/s0022-2836(65)80203-0. [DOI] [PubMed] [Google Scholar]
  3. CATLIN B. W. Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime. J Bacteriol. 1960 Apr;79:579–590. doi: 10.1128/jb.79.4.579-590.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erickson R. J., Braun W. Apparent dependence of transformation on the stage of deoxyribonucleic acid replication of recipient cells. Bacteriol Rev. 1968 Dec;32(4 Pt 1):291–296. [PMC free article] [PubMed] [Google Scholar]
  5. Gabor M., Hotchkiss R. D. Manifestation of linear organization in molecules of pneumococcal transforming DNA. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1441–1448. doi: 10.1073/pnas.56.5.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Joshi G. P., Siddiqi O. Enzyme synthesis following conjugation and recombination in Escherichia coli. J Mol Biol. 1968 Mar 14;32(2):201–210. doi: 10.1016/0022-2836(68)90004-1. [DOI] [PubMed] [Google Scholar]
  7. Jyssum K. Polarity of chromosome replication in Neisseria meningitidis. J Bacteriol. 1965 Nov;90(5):1182–1187. doi: 10.1128/jb.90.5.1182-1187.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KENT J. L., HOTCHKISS R. D. KINETIC ANALYSIS OF MULTIPLE, LINKED RECOMBINATIONS IN PNEUMOCOCCAL TRANSFORMATION. J Mol Biol. 1964 Aug;9:308–322. doi: 10.1016/s0022-2836(64)80209-6. [DOI] [PubMed] [Google Scholar]
  9. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  10. LEVINE J. S., STRAUSS N. LAG PERIOD CHARACTERIZING THE ENTRY OF TRANSFORMING DEOXYRIBONUCLEIC ACID INTO BACILLUS SUBTILIS. J Bacteriol. 1965 Feb;89:281–287. doi: 10.1128/jb.89.2.281-287.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LIE S. STUDIES ON THE PHENOTYPIC EXPRESSION OF COMPETENCE IN NEISSERIA MENINGITIDIS. Acta Pathol Microbiol Scand. 1965;64:119–129. doi: 10.1111/apm.1965.64.1.119. [DOI] [PubMed] [Google Scholar]
  12. STRAUSS N. CONFIGURATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID DURING ENTRY INTO BACILLUS SUBTILIS. J Bacteriol. 1965 Feb;89:288–293. doi: 10.1128/jb.89.2.288-293.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STUY J. H., STERN D. THE KINETICS OF DNA UPTAKE BY HAEMOPHILUS INFLUENZAE. J Gen Microbiol. 1964 Jun;35:391–400. doi: 10.1099/00221287-35-3-391. [DOI] [PubMed] [Google Scholar]
  14. TOMIZAWA J. I., ANRAKU N. MOLECULAR MECHANISMS OF GENETIC RECOMBINATION IN BACTERIOPHAGE. II. JOINING OF PARENTAL DNA MOLECULES OF PHAGE T4. J Mol Biol. 1964 Apr;8:516–540. doi: 10.1016/s0022-2836(64)80009-7. [DOI] [PubMed] [Google Scholar]
  15. Wolstenholme D. R., Vermeulen C. A., Venema G. Evidence for the involvement of membranous bodies in the processes leading to genetic transformation in Bacillus subtilis. J Bacteriol. 1966 Oct;92(4):1111–1121. doi: 10.1128/jb.92.4.1111-1121.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Young F. E. Competence in Bacillus subtilis transformation system. Nature. 1967 Feb 25;213(5078):773–775. doi: 10.1038/213773a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES