Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Aug;99(2):603–610. doi: 10.1128/jb.99.2.603-610.1969

Involvement of Phosphoenolpyruvate in Lactose Utilization by Group N Streptococci1

L L McKay a, L A Walter a, W E Sandine a, P R Elliker a
PMCID: PMC250061  PMID: 5808082

Abstract

The effect of sodium fluoride on lactose metabolism and o-nitrophenyl-β-d-galactopyranoside (ONPG) hydrolysis by Streptococcus lactis strains 7962 and C2F suggested that different mechanisms of lactose utilization existed in the two strains. Sodium fluoride prevented lactose utilization and ONPG hydrolysis by whole cells of S. lactis C2F but had no effect on S. lactis 7962. Although hydrolysis of ONPG by toluene-treated cells of S. lactis 7962 occurred without addition of phospho-enolpyruvate (PEP), toluene-treated cells of S. lactis C2F required the presence of this cofactor. Concentrated cell extracts of S. lactis C2F hydrolyzed ONPG; this hydrolysis was inhibited by NaF, but the addition of PEP, in the presence of NaF, restored maximal activity. Addition of acetyl-phosphate, carbamyl-phosphate, adenosine-5′-triphosphate, guanosine-5′-triphosphate, or uridine-5′-triphosphate did not stimulate activity. The presence of cofactors did not stimulate and NaF did not inhibit the hydrolysis in extracts of S. lactis 7962. To confirm the operation of two mechanisms, S. lactis 7962 was shown to hydrolyze lactose to glucose and galactose, whereas S. lactis C2F was unable to split the disaccharide. In addition, whole cells of S. lactis C2F rapidly accumulated a phosphorylated derivative of thiomethyl-β-d-galactoside (TMG) which behaved chromatographically and electrophoretically like TMG-PO4. Unexpectedly, S. lactis 7962 also accumulated a TMG derivative, although the rate was extremely low. These data indicate that different mechanisms of lactose utilization exist in the two strains, with a phosphorylation step dependent on PEP involved in S. lactis C2F.

Full text

PDF
603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENTLEY R., SLECHTA L. Oxidation of mono- and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol. 1960 Mar;79:346–355. doi: 10.1128/jb.79.3.346-355.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BUCEK W., CONNORS W. M., CORT W. M., ROBERTS H. R. Evidence for the formation and utilization of lactobionic acid by Penicillium chrysogenum. Arch Biochem Biophys. 1956 Aug;63(2):477–478. doi: 10.1016/0003-9861(56)90064-9. [DOI] [PubMed] [Google Scholar]
  3. CITTI J. E., SANDINE W. E., ELLIKER P. R. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS. J Bacteriol. 1965 Apr;89:937–942. doi: 10.1128/jb.89.4.937-942.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CREASER E. H. The induced (adaptive) biosynthesis of beta-galactosidase in Staphylococcus aureus. J Gen Microbiol. 1955 Apr;12(2):288–297. doi: 10.1099/00221287-12-2-288. [DOI] [PubMed] [Google Scholar]
  5. Citti J. E., Sandine W. E., Elliker P. R. Lactose and maltose uptake by Streptococcus lactis. J Dairy Sci. 1967 Apr;50(4):485–487. doi: 10.3168/jds.S0022-0302(67)87451-4. [DOI] [PubMed] [Google Scholar]
  6. DISCHE Z. New color reactions for determination of sugars in polysaccharides. Methods Biochem Anal. 1955;2:313–358. doi: 10.1002/9780470110188.ch11. [DOI] [PubMed] [Google Scholar]
  7. EATON N. R. New press for disruption of microorganisms. J Bacteriol. 1962 Jun;83:1359–1360. doi: 10.1128/jb.83.6.1359-1360.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FORREST W. W., WALKER D. J. SYNTHESIS OF RESERVE MATERIALS FOR ENDOGENOUS METABOLISM IN STREPTOCOCCUS FAECALIS. J Bacteriol. 1965 Jun;89:1448–1452. doi: 10.1128/jb.89.6.1448-1452.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hegarty C. P. Physiological Youth as an Important Factor in Adaptive Enzyme Formation. J Bacteriol. 1939 Feb;37(2):145–152. doi: 10.1128/jb.37.2.145-152.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hengstenberg W., Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate. Proc Natl Acad Sci U S A. 1967 Jul;58(1):274–279. doi: 10.1073/pnas.58.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hengstenberg W., Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated. J Biol Chem. 1968 Apr 25;243(8):1881–1885. [PubMed] [Google Scholar]
  12. Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. Metabolism of lactose by Staphylococcus aureus. J Bacteriol. 1968 Dec;96(6):2187–2188. doi: 10.1128/jb.96.6.2187-2188.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kennedy E. P., Scarborough G. A. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport. Proc Natl Acad Sci U S A. 1967 Jul;58(1):225–228. doi: 10.1073/pnas.58.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laue P., MacDonald R. E. Identification of thiomethyl-beta-D-galactoside 6-phosphate accumulated by Staphylococcus aureus. J Biol Chem. 1968 Feb 10;243(3):680–682. [PubMed] [Google Scholar]
  17. MCCLATCHY J. K., ROSENBLUM E. D. INDUCTION OF LACTOSE UTILIZATION IN STAPHYLOCOCCUS AUREUS. J Bacteriol. 1963 Dec;86:1211–1215. doi: 10.1128/jb.86.6.1211-1215.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McFeters G. A., Sandine W. E., Elliker P. R. Purification and properties of Streptococcus lactis beta-galactosidase. J Bacteriol. 1967 Mar;93(3):914–919. doi: 10.1128/jb.93.3.914-919.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morse M. L., Hill K. L., Egan J. B., Hengstenberg W. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J Bacteriol. 1968 Jun;95(6):2270–2274. doi: 10.1128/jb.95.6.2270-2274.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rahn O., Hegarty C. P., Deuel R. E. FACTORS INFLUENCING THE RATE OF FERMENTATION OF STREPTOCOCCUS LACTIS. J Bacteriol. 1938 May;35(5):547–558. doi: 10.1128/jb.35.5.547-558.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SANDINE W. E., ELLIKER P. R., HAYS H. Cultural studies on Streptococcus diacetilactis and other members of the lactic Streptococcus group. Can J Microbiol. 1962 Apr;8:161–174. doi: 10.1139/m62-021. [DOI] [PubMed] [Google Scholar]
  22. Simoni R. D., Smith M. F., Roseman S. Resolution of a staphylococcal phosphotransferase system into four protein components and its relation to sugar transport. Biochem Biophys Res Commun. 1968 Jun 10;31(5):804–811. doi: 10.1016/0006-291x(68)90634-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES