Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Nov;100(2):687–694. doi: 10.1128/jb.100.2.687-694.1969

Influence of Methionine Pool Composition on the Formation of Methyl-Deficient Transfer Ribonucleic Acid in Saccharomyces cerevisiae

Kerstin Kjellin-Stråby a,1
PMCID: PMC250145  PMID: 5354940

Abstract

Methionine auxotrophs of Saccharomyces cerevisiae continue to synthesize ribonucleic acid (RNA) after methionine withdrawal. The newly synthesized transfer RNA (tRNA) is methyl-deficient in some strains, but not in all. Whether such tRNA will accumulate depends on the position of the block in the methionine pathway that is carried by the mutant strain. Free methionine rapidly decreases in the intracellular pool of all strains after its removal from the medium. Certain metabolites derived from methionine are removed from the pool relatively slowly after methionine withdrawal. Notable among these is S-adenosylhomocysteine, which is depleted less rapidly from those strains that accumulate methyl-deficient tRNA than from others. S-adenosylhomocysteine is a potent inhibitor of tRNA-methylating enzymes in vitro.

Full text

PDF
687

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRNSTIEL M. L., FLEISSNER E., BOREK E. NUCLEOLUS: A CENTER OF RNA METHYLATION. Science. 1963 Dec 20;142(3599):1577–1580. doi: 10.1126/science.142.3599.1577. [DOI] [PubMed] [Google Scholar]
  2. Botsford J. L., Parks L. W. Role of S-adenosylmethionine in methionine biosynthesis in yeast. J Bacteriol. 1967 Oct;94(4):966–971. doi: 10.1128/jb.94.4.966-971.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DELAVIER-KLUTCHKO C., FLAVIN M. ENZYMATIC SYNTHESIS AND CLEAVAGE OF CYSTATHIONINE IN FUNGI AND BACTERIA. J Biol Chem. 1965 Jun;240:2537–2549. [PubMed] [Google Scholar]
  5. De Robichon-Szulmajster Régulation du fonctionnement de deux chaines de biosynthèse chez saccharomyces cerevisiae: thréonine-méthionine et isoleucine-valine. Bull Soc Chim Biol (Paris) 1967 Dec 18;49(11):1431–1462. [PubMed] [Google Scholar]
  6. Duerre J. A. In vivo and in vitro metabolism of S-adenosyl-L-homocysteine by Saccharomyces cerevisiae. Arch Biochem Biophys. 1968 Mar 20;124(1):422–430. doi: 10.1016/0003-9861(68)90347-0. [DOI] [PubMed] [Google Scholar]
  7. Flavin M., Slaughter C. Synthesis of the succinic ester of homoserine, a new intermediate in the bacterial biosynthesis of methionine. Biochemistry. 1965 Jul;4(7):1370–1375. doi: 10.1021/bi00883a022. [DOI] [PubMed] [Google Scholar]
  8. HALVORSON H., FRY W., SCHWEMMIN D. A study of the properties of the free amino acid pool and enzyme synthesis in yeast. J Gen Physiol. 1955 Mar 20;38(4):549–573. doi: 10.1085/jgp.38.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HURWITZ J., GOLD M., ANDERS M. THE ENZYMATIC METHYLATION OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID. IV. THE PROPERTIES OF THE SOLUBLE RIBONUCLEIC ACID-METHYLATING ENZYMES. J Biol Chem. 1964 Oct;239:3474–3482. [PubMed] [Google Scholar]
  10. Isaksson L. A., Phillips J. H. Studies on microbial RNA. V. A comparison of the in vivo methylated components of ribosomal RNA from Escherichia coli and Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Jan 29;155(1):63–71. [PubMed] [Google Scholar]
  11. Kerr D. S., Flavin M. Synthesis of cystathionine from O-acetylhomoserine in Neurospora: a step in methionine biosynthesis. Biochem Biophys Res Commun. 1968 Apr 5;31(1):124–130. doi: 10.1016/0006-291x(68)90041-7. [DOI] [PubMed] [Google Scholar]
  12. Kjellin-Stråby K., Phillips J. H. Methyl-deficient transfer ribonucleic acid and macromolecular synthesis in methionine-starved Saccharomyces cerevisiae. J Bacteriol. 1969 Nov;100(2):679–686. doi: 10.1128/jb.100.2.679-686.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kjellin-Stråby K., Phillips J. H. Studies on microbial ribonucleic acid. VI. Appearance of methyl-deficient transfer ribonucleic acid during logarithmic growth of Saccharomyces cerevisiae. J Bacteriol. 1968 Sep;96(3):760–767. doi: 10.1128/jb.96.3.760-767.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MUDD S. H. Enzymatic cleavage of S-adenosylmethionine. J Biol Chem. 1959 Jan;234(1):87–92. [PubMed] [Google Scholar]
  15. Nagai S., Flavin M. Acetylhomoserine. An intermediate in the fungal biosynthesis of methionine. J Biol Chem. 1967 Sep 10;242(17):3884–3895. [PubMed] [Google Scholar]
  16. PIGG C. J., SPENCE K. D., PARKS L. W. Methionine biosynthesis in yeast. Arch Biochem Biophys. 1962 Jun;97:491–496. doi: 10.1016/0003-9861(62)90112-1. [DOI] [PubMed] [Google Scholar]
  17. POMPER S. Methionine-requiring mutants of Saccharomyces cerevisiae. J Bacteriol. 1953 Jun;65(6):666–670. doi: 10.1128/jb.65.6.666-670.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Phillips J. H. Methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae. J Bacteriol. 1969 Nov;100(2):695–700. doi: 10.1128/jb.100.2.695-700.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robichon-Szulmajster H., Cherest H. Regulation of homoserine O-transacetylase, first step in methionine biosyntheis in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1967 Jul 21;28(2):256–262. doi: 10.1016/0006-291x(67)90438-x. [DOI] [PubMed] [Google Scholar]
  20. SCHLENK F., EHNINGER D. J. OBSERVATIONS ON THE METABOLISM OF 5'-METHYLTHIOADENOSINE. Arch Biochem Biophys. 1964 Jul 20;106:95–100. doi: 10.1016/0003-9861(64)90161-4. [DOI] [PubMed] [Google Scholar]
  21. SHAPIRO S. K. Adenosylmethioninehomocysteine transmethylase. Biochim Biophys Acta. 1958 Aug;29(2):405–409. doi: 10.1016/0006-3002(58)90199-9. [DOI] [PubMed] [Google Scholar]
  22. SIRLIN J. L., JACOB J., TANDLER C. J. TRANSFER OF THE METHYL GROUP OF METHIONINE TO NUCLEOLAR RIBONUCLEIC ACID. Biochem J. 1963 Dec;89:447–452. doi: 10.1042/bj0890447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
  24. Sorsoli W. A., Buettner M., Parks L. W. Cystathionine metabolism in methionine auxotrophic and wild-type strains of Saccharomyces cerevisiae. J Bacteriol. 1968 Mar;95(3):1024–1029. doi: 10.1128/jb.95.3.1024-1029.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spence K. D., Shapiro S. K. Some mutants of Saccharomyces cerevisiae inhibited by adenoylmethionine and adenosylhomocysteine. J Bacteriol. 1967 Oct;94(4):1136–1142. doi: 10.1128/jb.94.4.1136-1142.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Uziel M., Cohn W. E. Desalting of nucleotides by gel filtration. Biochim Biophys Acta. 1965 Jul 15;103(3):539–541. doi: 10.1016/0005-2787(65)90156-5. [DOI] [PubMed] [Google Scholar]
  27. Yall I., Norrell S. A., Joseph R., Knudsen R. C. Effect of L-methionine and S-adenosylmethionine on growth of an adenine mutant of Saccharomyces cerevisiae. J Bacteriol. 1967 May;93(5):1551–1558. doi: 10.1128/jb.93.5.1551-1558.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES