Abstract
Oxidation of d-α-hydroxyglutarate to α-ketoglutarate is catalyzed by d-α-hydroxyglutarate oxidoreductase, an inducible membrane-bound enzyme of the electron transport particle [ETP; a comminuted cytoplasmic membrane preparation with enzymic properties and chemical composition resembling beef heart mitochondrial ETP (1)] of Pseudomonas putida P2 (P2-ETP). Treatment of P2-ETP with a nonionic detergent yields a preparation with the sedimentation characteristics of a soluble enzyme, but which retains an intact electron transport chain. Oxygen acts solely as a terminal electron acceptor and may be replaced by ferricyanide, 2,6-dichlorophenol indophenol, or mammalian cytochrome c. The oxidoreductase is specific for the d-isomer (Km = 4.0 × 10−4m for dl-α-hydroxyglutarate) and is distinct both from l- and d-malate dehydrogenases. Spectral studies suggest that the carrier sequence is substrate → flavine or nonheme iron → cyt b → [cyt c] → oxygen.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baginsky M. L., Rodwell V. W. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida. J Bacteriol. 1966 Aug;92(2):424–432. doi: 10.1128/jb.92.2.424-432.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baginsky M. L., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase. J Bacteriol. 1967 Oct;94(4):1034–1039. doi: 10.1128/jb.94.4.1034-1039.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
- DAVIES D. D., KUN E. Isolation and properties of malic dehydrogenase from ox-heart mitochondria. Biochem J. 1957 Jun;66(2):307–316. doi: 10.1042/bj0660307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayaishi O. Crystalline oxygenases of pseudomonads. Bacteriol Rev. 1966 Dec;30(4):720–731. doi: 10.1128/br.30.4.720-731.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON A. B., STRECKER H. J. The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem. 1962 Jun;237:1876–1882. [PubMed] [Google Scholar]
- Jacobs E. E., Andrews E. C., Cunningham W., Crane F. L. Membraneous oxidase purification, properties and reaction characteristics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):87–95. doi: 10.1016/0006-291x(66)90644-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- NUMA S., ISHIMURA Y., NAKAZAWA T., OKAZAKI T., HAYAISHI O. ENZYMIC STUDIES ON THE METABOLISM OF GLUTARATE IN PSEUDOMONAS. J Biol Chem. 1964 Nov;239:3915–3926. [PubMed] [Google Scholar]
- RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. J Biol Chem. 1962 Jul;237:2232–2238. [PubMed] [Google Scholar]
- REEVES H. C., AJL S. J. Alpha-hydroxyglutaric acid synthetase. J Bacteriol. 1962 Jul;84:186–187. doi: 10.1128/jb.84.1.186-187.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reitz M. S., Miller D. L., Rodwell V. W. Synthesis of delta-aminovaleramide. Anal Biochem. 1969 Apr 4;28(1):269–272. doi: 10.1016/0003-2697(69)90178-x. [DOI] [PubMed] [Google Scholar]
- Takeda H., Hayaishi O. Crystalline L-lysine oxygenase. J Biol Chem. 1966 Jun 10;241(11):2733–2736. [PubMed] [Google Scholar]
