Abstract
Growth of Aerobacter aerogenes PRL-R3 on the unnatural hexose l-mannose as a sole carbon source is dependent upon the selection of a mutant. Growth of the mutant on l-mannose did not require the synthesis of novel enzymes for the degradation of l-mannose, since enzymes of the l-rhamnose degradative pathway could serve this function. However, unlike most other apparent gain mutations that have been described, the mutant was not constitutive for the degradative enzymes; isomerase, kinase, and aldolase activities functional in the degradation of both l-mannose and l-rhamnose were induced by either of these hexoses in the wild type as well as in the mutant. The fact that the wild type could metabolize l-mannose also ruled out the possibility that the cells were not permeable to l-mannose. Growth of the wild type on nutrient broth was severely inhibited by l-mannose coincident with the onset of l-mannose metabolism. A similar inhibition of growth of the mutant was overcome in about 2 hr. Both strains utilized l-rhamnose and l-mannose sequentially in a mineral medium containing both of these hexoses; at the onset of l-mannose metabolism, growth of the wild type, but not of the mutant, was inhibited. Thus, wild-type A. aerogenes cannot grow on l-mannose because of the toxicity of l-mannose or its metabolites. A mutation which overcomes the toxicity enables the organism to utilize l-mannose as a sole source of carbon and energy for growth.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON R. L., ALLISON D. P. PURIFICATION AND CHARACTERIZATION OF D-LYXOSE ISOMERASE. J Biol Chem. 1965 Jun;240:2367–2372. [PubMed] [Google Scholar]
- CHIU T. H., FEINGOLD D. S. THE PURIFICATION AND PROPERTIES OF L-RHAMNULOKINASE. Biochim Biophys Acta. 1964 Dec 23;92:489–497. doi: 10.1016/0926-6569(64)90009-4. [DOI] [PubMed] [Google Scholar]
- Camyre K. P., Mortlock R. P. Growth of Aerobacter aerogenes on D-arabinose and L-xylose. J Bacteriol. 1965 Oct;90(4):1157–1158. doi: 10.1128/jb.90.4.1157-1158.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutinelli C., Galdiero F. Effect of D,L-glyceraldehyde on bacterial cells metabolism. Experientia. 1967 Jun 15;23(6):437–439. doi: 10.1007/BF02142163. [DOI] [PubMed] [Google Scholar]
- DISCHE Z., BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem. 1951 Oct;192(2):583–587. [PubMed] [Google Scholar]
- DOMAGK G. F., ZECH R. UBER DEN ABBAU DER DESOXYZUCKER DURCH BAKTERIENENZYME. I. L-RHAMNOSE-ISOMERASE AUS LACTOBACILLUS PLANTARUM. Biochem Z. 1963 Oct 14;339:145–153. [PubMed] [Google Scholar]
- ENGLESBERG E. Physiological basis for rhamnose utilization by a mutant of Pasteurella pestis. II. A single mutational event leading to the production of two enzymes. Arch Biochem Biophys. 1957 Sep;71(1):179–193. doi: 10.1016/0003-9861(57)90020-6. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., WIEBELHAUS V. D., MANN K. M. The mechanism by which glyceraldehyde inhibits glycolysis. J Biol Chem. 1950 Nov;187(1):325–337. [PubMed] [Google Scholar]
- LERNER S. A., WU T. T., LIN E. C. EVOLUTION OF A CATABOLIC PATHWAY IN BACTERIA. Science. 1964 Dec 4;146(3649):1313–1315. doi: 10.1126/science.146.3649.1313. [DOI] [PubMed] [Google Scholar]
- Mayo J. W., Anderson R. L. Pathway of L-mannose degradation in Aerobacter aerogenes. J Biol Chem. 1968 Dec 25;243(24):6330–6333. [PubMed] [Google Scholar]
- Mortlock R. P., Fossitt D. D., Wood W. A. A basis for utlization of unnatural pentoses and pentitols by Aerobacter aerogenes. Proc Natl Acad Sci U S A. 1965 Aug;54(2):572–579. doi: 10.1073/pnas.54.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEEDHAM D. M., SIMINOVITCH L., RAPKINE S. M. On the mechanism of the inhibition of glycolysis by glyceraldehyde. Biochem J. 1951 Jun;49(1):113–124. doi: 10.1042/bj0490113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAWADA H., TAKAGI Y. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE. Biochim Biophys Acta. 1964 Oct 23;92:26–32. doi: 10.1016/0926-6569(64)90265-2. [DOI] [PubMed] [Google Scholar]
- Sapico V., Hanson T. E., Walter R. W., Anderson R. L. Metabolism of D-fructose in Aerobacter aerogenes: analysis of mutants lacking D-fructose 6-phosphate kinase and D-fructose 1,6-diphosphatase. J Bacteriol. 1968 Jul;96(1):51–54. doi: 10.1128/jb.96.1.51-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sridhara S., Wu T. T., Chused T. M., Lin E. C. Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1, 2-propanediol. J Bacteriol. 1969 Apr;98(1):87–95. doi: 10.1128/jb.98.1.87-95.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. I. L-RHAMNOSE ISOMERASE. Biochim Biophys Acta. 1964 Oct 23;92:10–17. doi: 10.1016/0926-6569(64)90263-9. [DOI] [PubMed] [Google Scholar]
- TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. II. L-RHAMNULOSE KINASE. Biochim Biophys Acta. 1964 Oct 23;92:18–25. doi: 10.1016/0926-6569(64)90264-0. [DOI] [PubMed] [Google Scholar]
- TOMBS M. P., SOUTER F., MACLAGAN N. F. The spectrophotometric determination of protein at 210 millimicrons. Biochem J. 1959 Sep;73:167–171. doi: 10.1042/bj0730167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TORRIANI A., ROTHMAN F. Mutants of Escherichia coli constitutive for alkaline phosphatase. J Bacteriol. 1961 May;81:835–836. doi: 10.1128/jb.81.5.835-836.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka S., Lerner S. A., Lin E. C. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol. 1967 Feb;93(2):642–648. doi: 10.1128/jb.93.2.642-648.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenzel M., Joel I., Oelkers W. Einfluss der Glukosekonzentration auf die glykolysehemmende Wirkung von Glycerinaldehyd. Naturwissenschaften. 1966 Feb;53(3):82–82. doi: 10.1007/BF00594757. [DOI] [PubMed] [Google Scholar]
- Wu T. T., Lin E. C., Tanaka S. Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon. J Bacteriol. 1968 Aug;96(2):447–456. doi: 10.1128/jb.96.2.447-456.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
