Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Nov;100(2):948–955. doi: 10.1128/jb.100.2.948-955.1969

Basis for the Mutational Acquisition of the Ability of Aerobacter aerogenes to Grow on l-Mannose

Joseph W Mayo 1, R L Anderson 1
PMCID: PMC250179  PMID: 5354955

Abstract

Growth of Aerobacter aerogenes PRL-R3 on the unnatural hexose l-mannose as a sole carbon source is dependent upon the selection of a mutant. Growth of the mutant on l-mannose did not require the synthesis of novel enzymes for the degradation of l-mannose, since enzymes of the l-rhamnose degradative pathway could serve this function. However, unlike most other apparent gain mutations that have been described, the mutant was not constitutive for the degradative enzymes; isomerase, kinase, and aldolase activities functional in the degradation of both l-mannose and l-rhamnose were induced by either of these hexoses in the wild type as well as in the mutant. The fact that the wild type could metabolize l-mannose also ruled out the possibility that the cells were not permeable to l-mannose. Growth of the wild type on nutrient broth was severely inhibited by l-mannose coincident with the onset of l-mannose metabolism. A similar inhibition of growth of the mutant was overcome in about 2 hr. Both strains utilized l-rhamnose and l-mannose sequentially in a mineral medium containing both of these hexoses; at the onset of l-mannose metabolism, growth of the wild type, but not of the mutant, was inhibited. Thus, wild-type A. aerogenes cannot grow on l-mannose because of the toxicity of l-mannose or its metabolites. A mutation which overcomes the toxicity enables the organism to utilize l-mannose as a sole source of carbon and energy for growth.

Full text

PDF
948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON R. L., ALLISON D. P. PURIFICATION AND CHARACTERIZATION OF D-LYXOSE ISOMERASE. J Biol Chem. 1965 Jun;240:2367–2372. [PubMed] [Google Scholar]
  2. CHIU T. H., FEINGOLD D. S. THE PURIFICATION AND PROPERTIES OF L-RHAMNULOKINASE. Biochim Biophys Acta. 1964 Dec 23;92:489–497. doi: 10.1016/0926-6569(64)90009-4. [DOI] [PubMed] [Google Scholar]
  3. Camyre K. P., Mortlock R. P. Growth of Aerobacter aerogenes on D-arabinose and L-xylose. J Bacteriol. 1965 Oct;90(4):1157–1158. doi: 10.1128/jb.90.4.1157-1158.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cutinelli C., Galdiero F. Effect of D,L-glyceraldehyde on bacterial cells metabolism. Experientia. 1967 Jun 15;23(6):437–439. doi: 10.1007/BF02142163. [DOI] [PubMed] [Google Scholar]
  5. DISCHE Z., BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem. 1951 Oct;192(2):583–587. [PubMed] [Google Scholar]
  6. DOMAGK G. F., ZECH R. UBER DEN ABBAU DER DESOXYZUCKER DURCH BAKTERIENENZYME. I. L-RHAMNOSE-ISOMERASE AUS LACTOBACILLUS PLANTARUM. Biochem Z. 1963 Oct 14;339:145–153. [PubMed] [Google Scholar]
  7. ENGLESBERG E. Physiological basis for rhamnose utilization by a mutant of Pasteurella pestis. II. A single mutational event leading to the production of two enzymes. Arch Biochem Biophys. 1957 Sep;71(1):179–193. doi: 10.1016/0003-9861(57)90020-6. [DOI] [PubMed] [Google Scholar]
  8. LARDY H. A., WIEBELHAUS V. D., MANN K. M. The mechanism by which glyceraldehyde inhibits glycolysis. J Biol Chem. 1950 Nov;187(1):325–337. [PubMed] [Google Scholar]
  9. LERNER S. A., WU T. T., LIN E. C. EVOLUTION OF A CATABOLIC PATHWAY IN BACTERIA. Science. 1964 Dec 4;146(3649):1313–1315. doi: 10.1126/science.146.3649.1313. [DOI] [PubMed] [Google Scholar]
  10. Mayo J. W., Anderson R. L. Pathway of L-mannose degradation in Aerobacter aerogenes. J Biol Chem. 1968 Dec 25;243(24):6330–6333. [PubMed] [Google Scholar]
  11. Mortlock R. P., Fossitt D. D., Wood W. A. A basis for utlization of unnatural pentoses and pentitols by Aerobacter aerogenes. Proc Natl Acad Sci U S A. 1965 Aug;54(2):572–579. doi: 10.1073/pnas.54.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NEEDHAM D. M., SIMINOVITCH L., RAPKINE S. M. On the mechanism of the inhibition of glycolysis by glyceraldehyde. Biochem J. 1951 Jun;49(1):113–124. doi: 10.1042/bj0490113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SAWADA H., TAKAGI Y. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE. Biochim Biophys Acta. 1964 Oct 23;92:26–32. doi: 10.1016/0926-6569(64)90265-2. [DOI] [PubMed] [Google Scholar]
  14. Sapico V., Hanson T. E., Walter R. W., Anderson R. L. Metabolism of D-fructose in Aerobacter aerogenes: analysis of mutants lacking D-fructose 6-phosphate kinase and D-fructose 1,6-diphosphatase. J Bacteriol. 1968 Jul;96(1):51–54. doi: 10.1128/jb.96.1.51-54.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sridhara S., Wu T. T., Chused T. M., Lin E. C. Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1, 2-propanediol. J Bacteriol. 1969 Apr;98(1):87–95. doi: 10.1128/jb.98.1.87-95.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. I. L-RHAMNOSE ISOMERASE. Biochim Biophys Acta. 1964 Oct 23;92:10–17. doi: 10.1016/0926-6569(64)90263-9. [DOI] [PubMed] [Google Scholar]
  17. TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. II. L-RHAMNULOSE KINASE. Biochim Biophys Acta. 1964 Oct 23;92:18–25. doi: 10.1016/0926-6569(64)90264-0. [DOI] [PubMed] [Google Scholar]
  18. TOMBS M. P., SOUTER F., MACLAGAN N. F. The spectrophotometric determination of protein at 210 millimicrons. Biochem J. 1959 Sep;73:167–171. doi: 10.1042/bj0730167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TORRIANI A., ROTHMAN F. Mutants of Escherichia coli constitutive for alkaline phosphatase. J Bacteriol. 1961 May;81:835–836. doi: 10.1128/jb.81.5.835-836.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanaka S., Lerner S. A., Lin E. C. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol. 1967 Feb;93(2):642–648. doi: 10.1128/jb.93.2.642-648.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wenzel M., Joel I., Oelkers W. Einfluss der Glukosekonzentration auf die glykolysehemmende Wirkung von Glycerinaldehyd. Naturwissenschaften. 1966 Feb;53(3):82–82. doi: 10.1007/BF00594757. [DOI] [PubMed] [Google Scholar]
  22. Wu T. T., Lin E. C., Tanaka S. Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon. J Bacteriol. 1968 Aug;96(2):447–456. doi: 10.1128/jb.96.2.447-456.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES