Skip to main content
Annals of The Royal College of Surgeons of England logoLink to Annals of The Royal College of Surgeons of England
. 1997 Jan;79(1):20–27.

Control mechanisms in bone resorption: 240 years after John Hunter.

M C Meikle 1
PMCID: PMC2502607  PMID: 9038491

Full text

PDF
20

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertolini D. R., Nedwin G. E., Bringman T. S., Smith D. D., Mundy G. R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986 Feb 6;319(6053):516–518. doi: 10.1038/319516a0. [DOI] [PubMed] [Google Scholar]
  2. Burgess W. H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
  3. Chambers T. J., Darby J. A., Fuller K. Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell Tissue Res. 1985;241(3):671–675. doi: 10.1007/BF00214590. [DOI] [PubMed] [Google Scholar]
  4. Delaissé J. M., Eeckhout Y., Vaes G. Inhibition of bone resorption in culture by inhibitors of thiol proteinases. Biochem J. 1980 Oct 15;192(1):365–368. doi: 10.1042/bj1920365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gowen M., Meikle M. C., Reynolds J. J. Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture. Biochim Biophys Acta. 1983 Jun 2;762(3):471–474. doi: 10.1016/0167-4889(83)90014-9. [DOI] [PubMed] [Google Scholar]
  6. Heath J. K., Atkinson S. J., Meikle M. C., Reynolds J. J. Mouse osteoblasts synthesize collagenase in response to bone resorbing agents. Biochim Biophys Acta. 1984 Nov 6;802(1):151–154. doi: 10.1016/0304-4165(84)90046-1. [DOI] [PubMed] [Google Scholar]
  7. Heath J. K., Saklatvala J., Meikle M. C., Atkinson S. J., Reynolds J. J. Pig interleukin 1 (catabolin) is a potent stimulator of bone resorption in vitro. Calcif Tissue Int. 1985 Jan;37(1):95–97. doi: 10.1007/BF02557686. [DOI] [PubMed] [Google Scholar]
  8. Hill P. A., Buttle D. J., Jones S. J., Boyde A., Murata M., Reynolds J. J., Meikle M. C. Inhibition of bone resorption by selective inactivators of cysteine proteinases. J Cell Biochem. 1994 Sep;56(1):118–130. doi: 10.1002/jcb.240560116. [DOI] [PubMed] [Google Scholar]
  9. Hill P. A., Docherty A. J., Bottomley K. M., O'Connell J. P., Morphy J. R., Reynolds J. J., Meikle M. C. Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochem J. 1995 May 15;308(Pt 1):167–175. doi: 10.1042/bj3080167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill P. A., Murphy G., Docherty A. J., Hembry R. M., Millican T. A., Reynolds J. J., Meikle M. C. The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci. 1994 Nov;107(Pt 11):3055–3064. doi: 10.1242/jcs.107.11.3055. [DOI] [PubMed] [Google Scholar]
  11. Hill P. A., Reynolds J. J., Meikle M. C. The purification and partial characterization of bone resorptive polypeptides from bovine bone matrix. Biochim Biophys Acta. 1994 Nov 11;1201(2):193–202. doi: 10.1016/0304-4165(94)90041-8. [DOI] [PubMed] [Google Scholar]
  12. Kimble R. B., Matayoshi A. B., Vannice J. L., Kung V. T., Williams C., Pacifici R. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995 Jul;136(7):3054–3061. doi: 10.1210/endo.136.7.7789332. [DOI] [PubMed] [Google Scholar]
  13. Luben R. A., Wong G. L., Cohn D. V. Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology. 1976 Aug;99(2):526–534. doi: 10.1210/endo-99-2-526. [DOI] [PubMed] [Google Scholar]
  14. Manolagas S. C., Haussler M. R., Deftos L. J. 1,25-Dihydroxyvitamin D3 receptor-like macromolecule in rat osteogenic sarcoma cell lines. J Biol Chem. 1980 May 25;255(10):4414–4417. [PubMed] [Google Scholar]
  15. Manolagas S. C., Jilka R. L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995 Feb 2;332(5):305–311. doi: 10.1056/NEJM199502023320506. [DOI] [PubMed] [Google Scholar]
  16. Meikle M. C., Bord S., Hembry R. M., Compston J., Croucher P. I., Reynolds J. J. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J Cell Sci. 1992 Dec;103(Pt 4):1093–1099. doi: 10.1242/jcs.103.4.1093. [DOI] [PubMed] [Google Scholar]
  17. Meikle M. C., McGarrity A. M., Thomson B. M., Reynolds J. J. Bone-derived growth factors modulate collagenase and TIMP (tissue inhibitor of metalloproteinases) activity and type I collagen degradation by mouse calvarial osteoblasts. Bone Miner. 1991 Jan;12(1):41–55. doi: 10.1016/0169-6009(91)90120-o. [DOI] [PubMed] [Google Scholar]
  18. Parfitt A. M. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994 Jul;55(3):273–286. doi: 10.1002/jcb.240550303. [DOI] [PubMed] [Google Scholar]
  19. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]

Articles from Annals of The Royal College of Surgeons of England are provided here courtesy of The Royal College of Surgeons of England

RESOURCES