Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1991 Nov;65(11):6008–6014. doi: 10.1128/jvi.65.11.6008-6014.1991

Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo GM1+ cells.

H F Staats 1, J E Oakes 1, R N Lausch 1
PMCID: PMC250266  PMID: 1920624

Abstract

Passive transfer of a monoclonal antibody (MAb) specific for glycoprotein D (gD) is highly effective in preventing the development of herpes simplex virus type 1-induced stromal keratitis. In the present study, we investigated whether animals which had been functionally depleted of T-cell subsets or asialo GM1+ cells would continue to be responsive to MAb therapy. BALB/c mice were depleted of CD4+, CD8+, or asialo GM1+ cells by treatment with anti-L3T4, anti-Lyt 2.2, or anti-asialo GM1 antibodies, respectively. Functional depletion of CD4+ cells was documented by the loss of delayed-type hypersensitivity responsiveness, while CD8+ cell depletion was accompanied by abrogation of cytotoxic lymphocyte activity. Anti-asialo GM1 treatment led to the loss of natural killer cell lytic activity. Mice depleted of the desired cell population and infected on the scarified cornea with herpes simplex virus type 1 uniformly developed necrotizing stromal keratitis by 3 weeks postinfection. A single inoculation of anti-gD MAb (55 micrograms) given intraperitoneally 24 h postinfection strongly protected hosts depleted of CD4+ cells against stromal keratitis. Likewise, antibody treatment in CD8+ or asialo GM1+ cell-depleted hosts was as therapeutically effective as that seen in non-cell-depleted mice. We also observed that in cell-depleted mice, the virus spread into the central nervous system and caused encephalitis. The CD4+ cell-depleted mice were the most severely affected, as 100% developed fatal disease. Anti-gD MAb treatment successfully protected all (32 of 32) CD4+-, CD8+-, or asialo GM1(+)-depleted hosts against encephalitis. We therefore conclude that antibody-mediated prevention of stromal keratitis and encephalitis does not require the obligatory participation of CD4+, CD8+, or asialo GM1+ cells. However, when mice were simultaneously depleted of both CD4+ and CD8+ T-cell subsets, antibody treatment could not prevent fatal encephalitis. Thus, antibody can compensate for the functional loss of one but not two T-lymphocyte subpopulations.

Full text

PDF
6008

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bukowski J. F., Welsh R. M. The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1. J Immunol. 1986 May 1;136(9):3481–3485. [PubMed] [Google Scholar]
  2. Ching C., Lopez C. Natural killing of herpes simplex virus type 1-infected target cells: normal human responses and influence of antiviral antibody. Infect Immun. 1979 Oct;26(1):49–56. doi: 10.1128/iai.26.1.49-56.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chmielarczyk W., Engler H., Ernst R., Opitz U., Kirchner H. Injection of anti-thy-1.2 serum breaks genetic resistance of mice against herpes simplex virus. J Gen Virol. 1985 May;66(Pt 5):1087–1094. doi: 10.1099/0022-1317-66-5-1087. [DOI] [PubMed] [Google Scholar]
  4. Dawson C. R., Togni B. Herpes simplex eye infections: clinical manifestations, pathogenesis and management. Surv Ophthalmol. 1976 Sep-Oct;21(2):121–135. doi: 10.1016/0039-6257(76)90090-4. [DOI] [PubMed] [Google Scholar]
  5. Dialynas D. P., Wilde D. B., Marrack P., Pierres A., Wall K. A., Havran W., Otten G., Loken M. R., Pierres M., Kappler J. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  6. Erlich K. S., Wofsy D., Dix R. D., Mills J. Effects of selective depletion of L3T4+ T-lymphocytes on herpes simplex virus encephalitis. Clin Immunol Immunopathol. 1989 Aug;52(2):190–201. doi: 10.1016/0090-1229(89)90171-2. [DOI] [PubMed] [Google Scholar]
  7. Habu S., Akamatsu K., Tamaoki N., Okumura K. In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice. J Immunol. 1984 Nov;133(5):2743–2747. [PubMed] [Google Scholar]
  8. Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
  9. Hendricks R. L., Tao M. S., Glorioso J. C. Alterations in the antigenic structure of two major HSV-1 glycoproteins, gC and gB, influence immune regulation and susceptibility to murine herpes keratitis. J Immunol. 1989 Jan 1;142(1):263–269. [PubMed] [Google Scholar]
  10. Hendricks R. L., Tumpey T. M. Contribution of virus and immune factors to herpes simplex virus type I-induced corneal pathology. Invest Ophthalmol Vis Sci. 1990 Oct;31(10):1929–1939. [PubMed] [Google Scholar]
  11. Kasaian M. T., Leite-Morris K. A., Biron C. A. The role of CD4+ cells in sustaining lymphocyte proliferation during lymphocytic choriomeningitis virus infection. J Immunol. 1991 Mar 15;146(6):1955–1963. [PubMed] [Google Scholar]
  12. Kaufmann S. H., Hug E., De Libero G. Listeria monocytogenes-reactive T lymphocyte clones with cytolytic activity against infected target cells. J Exp Med. 1986 Jul 1;164(1):363–368. doi: 10.1084/jem.164.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lausch R. N., Kleinschradt W. R., Monteiro C., Kayes S. G., Oakes J. E. Resolution of HSV corneal infection in the absence of delayed-type hypersensitivity. Invest Ophthalmol Vis Sci. 1985 Nov;26(11):1509–1515. [PubMed] [Google Scholar]
  14. Lausch R. N., Oakes J. E., Metcalf J. F., Scimeca J. M., Smith L. A., Robertson S. M. Quantitation of purified monoclonal antibody needed to prevent HSV-1 induced stromal keratitis in mice. Curr Eye Res. 1989 May;8(5):499–506. doi: 10.3109/02713688909000030. [DOI] [PubMed] [Google Scholar]
  15. Lausch R. N., Staats H., Metcalf J. F., Oakes J. E. Effective antibody therapy in herpes simplex virus ocular infection. Characterization of recipient immune response. Intervirology. 1990;31(2-4):159–165. doi: 10.1159/000150150. [DOI] [PubMed] [Google Scholar]
  16. Liesegang T. J., Melton L. J., 3rd, Daly P. J., Ilstrup D. M. Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol. 1989 Aug;107(8):1155–1159. doi: 10.1001/archopht.1989.01070020221029. [DOI] [PubMed] [Google Scholar]
  17. Lopez C., Ryshke R., Bennett M. Marrow-dependent cells depleted by 89Sr mediate genetic resistance to herpes simplex virus type 1 infection in mice. Infect Immun. 1980 Jun;28(3):1028–1032. doi: 10.1128/iai.28.3.1028-1032.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Metcalf J. F., Hamilton D. S., Reichert R. W. Herpetic keratitis in athymic (nude) mice. Infect Immun. 1979 Dec;26(3):1164–1171. doi: 10.1128/iai.26.3.1164-1171.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Metcalf J. F., Koga J., Chatterjee S., Whitley R. J. Passive immunization with monoclonal antibodies against herpes simplex virus glycoproteins protects mice against herpetic ocular disease. Curr Eye Res. 1987 Jan;6(1):173–177. doi: 10.3109/02713688709020086. [DOI] [PubMed] [Google Scholar]
  20. Minagawa H., Sakuma S., Mohri S., Mori R., Watanabe T. Herpes simplex virus type 1 infection in mice with severe combined immunodeficiency (SCID). Arch Virol. 1988;103(1-2):73–82. doi: 10.1007/BF01319810. [DOI] [PubMed] [Google Scholar]
  21. Nagafuchi S., Hayashida I., Higa K., Wada T., Mori R. Role of Lyt-1 positive immune T cells in recovery from herpes simplex virus infection in mice. Microbiol Immunol. 1982;26(4):359–362. doi: 10.1111/j.1348-0421.1982.tb00186.x. [DOI] [PubMed] [Google Scholar]
  22. Nash A. A., Gell P. G. Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus. Cell Immunol. 1983 Feb 1;75(2):348–355. doi: 10.1016/0008-8749(83)90332-5. [DOI] [PubMed] [Google Scholar]
  23. Newell C. K., Martin S., Sendele D., Mercadal C. M., Rouse B. T. Herpes simplex virus-induced stromal keratitis: role of T-lymphocyte subsets in immunopathology. J Virol. 1989 Feb;63(2):769–775. doi: 10.1128/jvi.63.2.769-775.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oakes J. E., Davis W. B., Taylor J. A., Weppner W. A. Lymphocyte reactivity contributes to protection conferred by specific antibody passively transferred to herpes simplex virus-infected mice. Infect Immun. 1980 Aug;29(2):642–649. doi: 10.1128/iai.29.2.642-649.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oakes J. E., Rector J. T., Lausch R. N. Lyt-1+ T cells participate in recovery from ocular herpes simplex virus type 1 infection. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):188–194. [PubMed] [Google Scholar]
  26. Rager-Zisman B., Quan P. C., Rosner M., Moller J. R., Bloom B. R. Role of NK cells in protection of mice against herpes simplex virus-1 infection. J Immunol. 1987 Feb 1;138(3):884–888. [PubMed] [Google Scholar]
  27. Rector J. T., Lausch R. N., Oakes J. E. Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infect Immun. 1982 Oct;38(1):168–174. doi: 10.1128/iai.38.1.168-174.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Russell R. G., Nasisse M. P., Larsen H. S., Rouse B. T. Role of T-lymphocytes in the pathogenesis of herpetic stromal keratitis. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):938–944. [PubMed] [Google Scholar]
  29. Sarmiento M., Dialynas D. P., Lancki D. W., Wall K. A., Lorber M. I., Loken M. R., Fitch F. W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  30. Stein-Streilein J., Guffee J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J Immunol. 1986 Feb 15;136(4):1435–1441. [PubMed] [Google Scholar]
  31. Tamesis R. R., Foster C. S. Natural killer cellular cytotoxicity against herpes simplex virus-infected cells in Igh-1-disparate mice. Invest Ophthalmol Vis Sci. 1990 Nov;31(11):2224–2229. [PubMed] [Google Scholar]
  32. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol. 1983 Nov;131(5):2178–2183. [PubMed] [Google Scholar]
  34. Yasukawa M., Kobayashi Y. Inhibition of herpes simplex virus replication in vitro by human cytotoxic T cell clones and natural killer cell clones. J Gen Virol. 1985 Oct;66(Pt 10):2225–2229. doi: 10.1099/0022-1317-66-10-2225. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES