Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Dec;100(3):1256–1263. doi: 10.1128/jb.100.3.1256-1263.1969

Carbohydrate Transport in Clostridium perfingens Type A

D J Groves 1, Audrey F Gronlund 1
PMCID: PMC250308  PMID: 4311868

Abstract

Resting-cell suspensions of Clostridium perfringens actively transported glucose and mannose but not six other carbohydrates which would support at least limited growth of the microorganism. Competition studies suggested that glucose and mannose were transported by a common mechanism which was highly specific. Analyses of intracellular pools demonstrated that the accumulated carbohydrates were present as phosphorylated derivatives, not as free carbohydrates, and specificity data indicated that phosphorylation occurred at the transport level rather than via the soluble hexokinase.

Full text

PDF
1256

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. 3. Studies of the transport process. Biochim Biophys Acta. 1966 Jan 4;112(1):63–73. doi: 10.1016/s0926-6585(96)90009-6. [DOI] [PubMed] [Google Scholar]
  4. Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim Biophys Acta. 1965 Sep 27;109(1):172–183. doi: 10.1016/0926-6585(65)90101-9. [DOI] [PubMed] [Google Scholar]
  5. GRADO C., BALLOU C. E. Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide. J Biol Chem. 1961 Jan;236:54–60. [PubMed] [Google Scholar]
  6. Groves D. J., Gronlund A. F. Metabolism of Clostridium perfringens type A. I. Cultural conditions which provide stable cell suspensions. Can J Microbiol. 1969 Sep;15(9):1109–1112. doi: 10.1139/m69-198. [DOI] [PubMed] [Google Scholar]
  7. HAGIHIRA H., WILSON T. H., LIN E. C. STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE. Biochim Biophys Acta. 1963 Nov 15;78:505–515. doi: 10.1016/0006-3002(63)90912-0. [DOI] [PubMed] [Google Scholar]
  8. HOFFEE P., ENGLESBERG E., LAMY F. THE GLUCOSE PERMEASE SYSTEM IN BACTERIA. Biochim Biophys Acta. 1964 Mar 30;79:337–350. [PubMed] [Google Scholar]
  9. HORECKER B. L., THOMAS J., MONOD J. Galactose transport in Escherichia coli. I. General properties as studied in a galactokinaseless mutant. J Biol Chem. 1960 Jun;235:1580–1585. [PubMed] [Google Scholar]
  10. KEPES A. Métabolisme oxydatif lié au fonctionnement de la galactoside-perméase d'Escherichia coli. C R Hebd Seances Acad Sci. 1957 Mar 11;244(11):1550–1553. [PubMed] [Google Scholar]
  11. KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kundig W., Kundig F. D., Anderson B., Roseman S. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system. J Biol Chem. 1966 Jul 10;241(13):3243–3246. [PubMed] [Google Scholar]
  13. SCHARFF T. G., KREMER E. H., 3rd A tentative mechanism for the anaerobic transport of glucose, fructose and mannose in yeast. Arch Biochem Biophys. 1962 Apr;97:192–198. doi: 10.1016/0003-9861(62)90064-4. [DOI] [PubMed] [Google Scholar]
  14. Simoni R. D., Levinthal M., Kundig F. D., Kundig W., Anderson B., Hartman P. E., Roseman S. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1963–1970. doi: 10.1073/pnas.58.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
  16. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  17. Woods D. D., Trim A. R. Studies in the metabolism of the strict anaerobes: The metabolism of amino-acids by Cl. welchii. Biochem J. 1942 Jun;36(5-6):501–512. doi: 10.1042/bj0360501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES