Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Dec;100(3):1264–1270. doi: 10.1128/jb.100.3.1264-1270.1969

Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

Seymour Greenfield a, G W Claus a
PMCID: PMC250309  PMID: 5361215

Abstract

Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate.

Full text

PDF
1264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlet H. H. Thin-layer chromatography of keto acid dinitrophenylhydrazones of biological interest. Anal Biochem. 1968 Mar;22(3):525–529. doi: 10.1016/0003-2697(68)90294-7. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharjee J. K., Tucci A. F., Strassman M. Accumulation of alpha-ketoglutaric acid in yeast mutants requiring lysine. Arch Biochem Biophys. 1968 Feb;123(2):235–239. doi: 10.1016/0003-9861(68)90129-x. [DOI] [PubMed] [Google Scholar]
  3. CHEN R. F., PLAUT G. W. ACTIVATION AND INHIBITION OF DPN-LINKED ISOCITRATE DEHYDROGENASE OF HEART BY CERTAIN NUCLEOTIDES. Biochemistry. 1963 Sep-Oct;2:1023–1032. doi: 10.1021/bi00905a020. [DOI] [PubMed] [Google Scholar]
  4. Claus G. W., Orcutt M. L., Belly R. T. Phosphoenolpyruvate carboxylation and aspartate synthesis in Acetobacter suboxydans. J Bacteriol. 1969 Feb;97(2):691–696. doi: 10.1128/jb.97.2.691-696.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DICKMAN S. R., CLOUTIER A. A. Activation and stabilization of aconitase by ferrous ions. Arch Biochem. 1950 Jan;25(1):229–231. [PubMed] [Google Scholar]
  6. FEWSTER J. A. Growth of acetobacter suboxydans and the oxidation of aldoses, related carboxylic acids, and aldehydes. Biochem J. 1958 Aug;69(4):582–595. doi: 10.1042/bj0690582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flipse R. J., Dietz R. W. Metabolism of bovine semen. XVII. Oxidative metabolism of glutamate. J Dairy Sci. 1969 Jan;52(1):113–116. doi: 10.3168/jds.S0022-0302(69)86511-2. [DOI] [PubMed] [Google Scholar]
  8. Higgins H., Von Brand T. Separation of lactic acid and some Krebs cycle acids by thin-layer chromatography. Anal Biochem. 1966 Apr;15(1):122–126. doi: 10.1016/0003-2697(66)90254-5. [DOI] [PubMed] [Google Scholar]
  9. Hughes R. C. The cell wall of Bacillus licheniformis N.C.T.C. 6346. Isolation of low-molecular-weight fragments from the soluble mucopeptide. Biochem J. 1968 Jan;106(1):49–59. doi: 10.1042/bj1060049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ISHERWOOD F. A., CRUICKSHANK D. H. Chromatographic separation and analysis of mixtures of pyruvic, oxalacetic and alpha-ketoglutaric acids. Nature. 1954 Jan 16;173(4394):121–122. doi: 10.1038/173121a0. [DOI] [PubMed] [Google Scholar]
  11. KING T. E., CHELDELIN V. H. Oxidation of acetaldehyde by Acetobacter suboxydans. J Biol Chem. 1956 May;220(1):177–191. [PubMed] [Google Scholar]
  12. KING T. E., CHELDELIN V. H. Oxidations in Acetobacter suboxydans. Biochim Biophys Acta. 1954 May;14(1):108–116. doi: 10.1016/0006-3002(54)90137-7. [DOI] [PubMed] [Google Scholar]
  13. KING T. E., CHELDELIN V. H. Oxidative dissimilation in Acetobacter suboxydans. J Biol Chem. 1952 Sep;198(1):127–133. [PubMed] [Google Scholar]
  14. KING T. E., CHELDELIN V. H. Pyruvic carboxylase of Acetobacter suboxydase. J Biol Chem. 1954 Jun;208(2):821–831. [PubMed] [Google Scholar]
  15. KING T. E., CHELDELIN V. H. Sources of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J Bacteriol. 1953 Nov;66(5):581–584. doi: 10.1128/jb.66.5.581-584.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KITOS P. A., KING T. E., CHELDELIN V. H. Metabolism of fructose-1,6-diphosphate and acetate in Acetobacter suboxydans. J Bacteriol. 1957 Nov;74(5):565–571. doi: 10.1128/jb.74.5.565-571.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KITOS P. A., WANG C. H., MOHLER B. A., KING T. E., CHELDELIN V. H. Glucose and gluconate dissimilation in Acetobacter suboxydans. J Biol Chem. 1958 Dec;233(6):1295–1298. [PubMed] [Google Scholar]
  18. KORNBERG A., PRICER W. E., Jr Di- and triphosphopyridine nucleotide isocitric dehydrogenases in yeast. J Biol Chem. 1951 Mar;189(1):123–136. [PubMed] [Google Scholar]
  19. Katsuki H., Yoshida T., Tanegashima C., Tanaka S. Improved method for the separation and characterization of keto acid 2,4-dinitrophenylhydrazones. Anal Biochem. 1968 Jul;24(1):112–119. doi: 10.1016/0003-2697(68)90065-1. [DOI] [PubMed] [Google Scholar]
  20. MORRISON J. F., PETERS R. A. Biochemistry of fluoroacetate poisoning: the effect of fluorocitrate on purified aconitase. Biochem J. 1954 Nov;58(3):473–479. doi: 10.1042/bj0580473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maragoudakis M. E., Sekizawa Y., King T. E., Cheldelin V. H. Glutamate biosynthesis in Acetobacter suboxydans. VI. Formation from acetate plus pyruvate. Biochemistry. 1966 Aug;5(8):2646–2653. doi: 10.1021/bi00872a024. [DOI] [PubMed] [Google Scholar]
  22. Maragoudakis M. E., Strassman M. Biosynthesis of alpha-isopropylmalic and citric acids in Acetobacter suboxydans. J Bacteriol. 1967 Sep;94(3):512–516. doi: 10.1128/jb.94.3.512-516.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  24. Ragland T. E., Kawasaki T., Lowenstein J. M. Comparative aspects of some bacterial dehydrogenases and transhydrogenases. J Bacteriol. 1966 Jan;91(1):236–244. doi: 10.1128/jb.91.1.236-244.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. STOUTHAMER A. H. Oxidative possibilities in the catalase-positive Acetobacter species. Antonie Van Leeuwenhoek. 1959;25:241–264. doi: 10.1007/BF02542850. [DOI] [PubMed] [Google Scholar]
  26. Sekizawa Y., Maragoudakis M. E., King T. E., Cheldelin V. H. Glutamate biosynthesis in an organism lacking a Krebs tricarboxylic acid cycle. V. Isolation of alpha-hydroxy-gamma-ketoglutarate (HKG) in Acetobacter suboxydans. Biochemistry. 1966 Jul;5(7):2392–2398. doi: 10.1021/bi00871a032. [DOI] [PubMed] [Google Scholar]
  27. WILLIAMS P. J., RAINBOW C. ENZYMES OF THE TRICARBOXYLIC ACID CYCLE IN ACETIC ACID BACTERIA. J Gen Microbiol. 1964 May;35:237–247. doi: 10.1099/00221287-35-2-237. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES