Abstract
A cysteine-requiring mutant of the parent strain Escherichia coli Hfr Cavalli (RCrel, Met−, λ) has been isolated. The mutant was selected by using replica plating after mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine. The mutation appears to be in the gene for sulfite reductase, since the mutant could utilize sulfide but not sulfite as a sulfur source. The mutant was found to be RCrel with respect to both methionine and cysteine. During cysteine starvation, transfer ribonucleic acid (tRNA) deficient in 4-thiouracil was produced, and in vivo studies indicate that this tRNA can accept sulfur groups to a greater extent than normal tRNA. Further, there were differences both in the rate and extent of amino acid acceptance between normal and sulfur-deficient tRNA. This suggests that thionucleotides are involved in at least one of the biological functions of the tRNA molecule.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bohinski R. C., Mallette M. F. Response of log-phase cells of Escherichia coli to medium limited in both sulfate and phosphate. J Bacteriol. 1967 Apr;93(4):1316–1326. doi: 10.1128/jb.93.4.1316-1326.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burrows W. J., Armstrong D. J., Skoog F., Hecht S. M., Boyle J. T., Leonard N. J., Occolowitz J. Cytokinin from soluble RNA of Escherichia coli: 6-(3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine. Science. 1968 Aug 16;161(3842):691–693. doi: 10.1126/science.161.3842.691. [DOI] [PubMed] [Google Scholar]
- Carbon J. A., Hung L., Jones D. S. A reversible oxidative in activation of specific transfer RNA species. Proc Natl Acad Sci U S A. 1965 May;53(5):979–986. doi: 10.1073/pnas.53.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbon J., David H., Studier M. H. Thiobases in Escherchia coli Transfer RNA: 2-Thiocytosine and 5-Methylaminomethyl-2-thiouracil. Science. 1968 Sep 13;161(3846):1146–1147. doi: 10.1126/science.161.3846.1146. [DOI] [PubMed] [Google Scholar]
- Carbon J., David H. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds. Biochemistry. 1968 Nov;7(11):3851–3858. doi: 10.1021/bi00851a010. [DOI] [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- Goehler B., Doi R. H. Presence and function of sulur-containing transfer ribonucleic acid of Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):793–800. doi: 10.1128/jb.95.3.793-800.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward R. S., Eliceiri G. L., Weiss S. B. Ribonucleic acid sulfur-transferase activity in extracts from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1966;31:459–464. doi: 10.1101/sqb.1966.031.01.059. [DOI] [PubMed] [Google Scholar]
- Hayward R. S., Weiss S. B. RNA thiolase: the enzymatic transfer of sulfur from cysteine to sRNA in Escherichia coli extracts. Proc Natl Acad Sci U S A. 1966 May;55(5):1161–1168. doi: 10.1073/pnas.55.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
- LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lipsett M. N., Peterkofsky A. Enzymatic thiolation of E. coli sRNA. Proc Natl Acad Sci U S A. 1966 May;55(5):1169–1174. doi: 10.1073/pnas.55.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsett M. N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. J Biol Chem. 1965 Oct;240(10):3975–3978. [PubMed] [Google Scholar]
- MANDEL L. R., BOREK E. THE NATURE OF THE RNA SYNTHESIZED DURING CONDITIONS OF UNBALANCED GROWTH IN E. COLI K12W-6. Biochemistry. 1963 May-Jun;2:560–566. doi: 10.1021/bi00903a030. [DOI] [PubMed] [Google Scholar]
- STENT G. S., BRENNER S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci U S A. 1961 Dec 15;47:2005–2014. doi: 10.1073/pnas.47.12.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yegian C. D., Stent G. S. Differential aminoacylation of three species of isoleucine transfer RNA from Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):59–71. doi: 10.1016/0022-2836(69)90333-7. [DOI] [PubMed] [Google Scholar]
