Abstract
The decay of alkaline phosphatase messenger ribonucleic acid (mRNA) in Escherichia coli was studied in cells sensitized to actinomycin D by ethylenediaminetetra-acetate treatment. It was found that in the wild-type strain (K-10) as well as in a nonsense mutant (S26C200), which is phenotypically reversible by treatment with 5-fluorouracil, mRNA decays with a half-life of 2.0 to 2.5 min. Similarly, in a 3-min pulse of labeled 5-fluorouracil, 70% of the incorporated analogue is contained in the labile RNA fraction decomposing with a half-life of 1.8 min.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARONSON A. I. The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim Biophys Acta. 1961 Apr 29;49:98–107. doi: 10.1016/0006-3002(61)90873-3. [DOI] [PubMed] [Google Scholar]
- Ben-Hamida F., Schlessinger D. Stability of beta-galactosidase messenger ribonucleic acid in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1611–1616. doi: 10.1128/jb.90.6.1611-1616.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
- Edlin G., Maaloe O. Synthesis and breakdown of messenger RNA without protein synthesis. J Mol Biol. 1966 Feb;15(2):428–434. doi: 10.1016/s0022-2836(66)80118-3. [DOI] [PubMed] [Google Scholar]
- Fan D. P. Decay of intact messengers in bacteria. J Mol Biol. 1966 Mar;16(1):164–179. doi: 10.1016/s0022-2836(66)80270-x. [DOI] [PubMed] [Google Scholar]
- GAREN A., ECHOLS H. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1398–1402. doi: 10.1073/pnas.48.8.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTWELL L. H., MAGASANIK B. THE MOLECULAR BASIS OF HISTIDASE INDUCTION IN BACILLUS SUBTILIS. J Mol Biol. 1963 Oct;7:401–420. doi: 10.1016/s0022-2836(63)80033-9. [DOI] [PubMed] [Google Scholar]
- HOLOUBEK V. The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J Mol Biol. 1963 Feb;6:164–166. doi: 10.1016/s0022-2836(63)80133-3. [DOI] [PubMed] [Google Scholar]
- HOROWITZ J., CHARGAFF E. Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature. 1959 Oct 17;184:1213–1215. doi: 10.1038/1841213a0. [DOI] [PubMed] [Google Scholar]
- Horowitz J., Kohlmeier V. Formation of active beta-galactosidase by Escherichia coli treated with 5-fluorouracil. Biochim Biophys Acta. 1967 Jun 20;142(1):208–218. doi: 10.1016/0005-2787(67)90528-x. [DOI] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
- LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leive L., Kollin V. Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes. Biochem Biophys Res Commun. 1967 Jul 21;28(2):229–236. doi: 10.1016/0006-291x(67)90434-2. [DOI] [PubMed] [Google Scholar]
- Leive L., Kollin V. Synthesis, utilization and degradation of lactose operon mRNA in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):247–259. doi: 10.1016/0022-2836(67)90330-0. [DOI] [PubMed] [Google Scholar]
- MONOD J., PAPPENHEIMER A. M., Jr, COHEN-BAZIRE G. La cinétique de la biosynthèse de la beta-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim Biophys Acta. 1952 Dec;9(6):648–660. doi: 10.1016/0006-3002(52)90227-8. [DOI] [PubMed] [Google Scholar]
- NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
- ROSEN B. CHARACTERISTICS OF 5-FLUOROURACIL-INDUCED SYNTHESIS OF ALKALINE PHOSPHATASE. J Mol Biol. 1965 Apr;11:845–850. doi: 10.1016/s0022-2836(65)80042-0. [DOI] [PubMed] [Google Scholar]
- ROTHMAN F., BYRNE R. Fingerprint analysis of alkaline phosphatase of Escherichia coli K12. J Mol Biol. 1963 Apr;6:330–340. doi: 10.1016/s0022-2836(63)80092-3. [DOI] [PubMed] [Google Scholar]
- Rothman F., Coleman J. R. Kinetics of transcription and tranalation of a repressed gene. J Mol Biol. 1968 Apr 28;33(2):527–531. doi: 10.1016/0022-2836(68)90212-x. [DOI] [PubMed] [Google Scholar]
- Saunders P. P., Bass R. E., Saunders G. F. Properties of 5-fluorouracil-containing ribonucleic acid and ribosomes from Bacillus subtilis. J Bacteriol. 1968 Aug;96(2):525–532. doi: 10.1128/jb.96.2.525-532.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer M. F., Leder P. Messenger RNA: an evaluation. Annu Rev Biochem. 1966;35:195–230. doi: 10.1146/annurev.bi.35.070166.001211. [DOI] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- Tershak D. R. Effect of 5-fluorouracil on poliovirus-induced RNA polymerase. J Mol Biol. 1966 Oct 28;21(1):43–50. doi: 10.1016/0022-2836(66)90078-7. [DOI] [PubMed] [Google Scholar]
