Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Dec;100(3):1364–1370. doi: 10.1128/jb.100.3.1364-1370.1969

Decay of Normal and 5-Fluorouracil-Substituted Messenger Ribonucleic Acid of Alkaline Phosphatase in Escherichia coli

Ezra Yagil 1, Nava Silberstein 1
PMCID: PMC250339  PMID: 4982895

Abstract

The decay of alkaline phosphatase messenger ribonucleic acid (mRNA) in Escherichia coli was studied in cells sensitized to actinomycin D by ethylenediaminetetra-acetate treatment. It was found that in the wild-type strain (K-10) as well as in a nonsense mutant (S26C200), which is phenotypically reversible by treatment with 5-fluorouracil, mRNA decays with a half-life of 2.0 to 2.5 min. Similarly, in a 3-min pulse of labeled 5-fluorouracil, 70% of the incorporated analogue is contained in the labile RNA fraction decomposing with a half-life of 1.8 min.

Full text

PDF
1364

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON A. I. The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim Biophys Acta. 1961 Apr 29;49:98–107. doi: 10.1016/0006-3002(61)90873-3. [DOI] [PubMed] [Google Scholar]
  2. Ben-Hamida F., Schlessinger D. Stability of beta-galactosidase messenger ribonucleic acid in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1611–1616. doi: 10.1128/jb.90.6.1611-1616.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
  5. Edlin G., Maaloe O. Synthesis and breakdown of messenger RNA without protein synthesis. J Mol Biol. 1966 Feb;15(2):428–434. doi: 10.1016/s0022-2836(66)80118-3. [DOI] [PubMed] [Google Scholar]
  6. Fan D. P. Decay of intact messengers in bacteria. J Mol Biol. 1966 Mar;16(1):164–179. doi: 10.1016/s0022-2836(66)80270-x. [DOI] [PubMed] [Google Scholar]
  7. GAREN A., ECHOLS H. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1398–1402. doi: 10.1073/pnas.48.8.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HARTWELL L. H., MAGASANIK B. THE MOLECULAR BASIS OF HISTIDASE INDUCTION IN BACILLUS SUBTILIS. J Mol Biol. 1963 Oct;7:401–420. doi: 10.1016/s0022-2836(63)80033-9. [DOI] [PubMed] [Google Scholar]
  10. HOLOUBEK V. The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J Mol Biol. 1963 Feb;6:164–166. doi: 10.1016/s0022-2836(63)80133-3. [DOI] [PubMed] [Google Scholar]
  11. HOROWITZ J., CHARGAFF E. Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature. 1959 Oct 17;184:1213–1215. doi: 10.1038/1841213a0. [DOI] [PubMed] [Google Scholar]
  12. Horowitz J., Kohlmeier V. Formation of active beta-galactosidase by Escherichia coli treated with 5-fluorouracil. Biochim Biophys Acta. 1967 Jun 20;142(1):208–218. doi: 10.1016/0005-2787(67)90528-x. [DOI] [PubMed] [Google Scholar]
  13. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  14. KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
  15. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leive L., Kollin V. Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes. Biochem Biophys Res Commun. 1967 Jul 21;28(2):229–236. doi: 10.1016/0006-291x(67)90434-2. [DOI] [PubMed] [Google Scholar]
  17. Leive L., Kollin V. Synthesis, utilization and degradation of lactose operon mRNA in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):247–259. doi: 10.1016/0022-2836(67)90330-0. [DOI] [PubMed] [Google Scholar]
  18. MONOD J., PAPPENHEIMER A. M., Jr, COHEN-BAZIRE G. La cinétique de la biosynthèse de la beta-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim Biophys Acta. 1952 Dec;9(6):648–660. doi: 10.1016/0006-3002(52)90227-8. [DOI] [PubMed] [Google Scholar]
  19. NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
  20. ROSEN B. CHARACTERISTICS OF 5-FLUOROURACIL-INDUCED SYNTHESIS OF ALKALINE PHOSPHATASE. J Mol Biol. 1965 Apr;11:845–850. doi: 10.1016/s0022-2836(65)80042-0. [DOI] [PubMed] [Google Scholar]
  21. ROTHMAN F., BYRNE R. Fingerprint analysis of alkaline phosphatase of Escherichia coli K12. J Mol Biol. 1963 Apr;6:330–340. doi: 10.1016/s0022-2836(63)80092-3. [DOI] [PubMed] [Google Scholar]
  22. Rothman F., Coleman J. R. Kinetics of transcription and tranalation of a repressed gene. J Mol Biol. 1968 Apr 28;33(2):527–531. doi: 10.1016/0022-2836(68)90212-x. [DOI] [PubMed] [Google Scholar]
  23. Saunders P. P., Bass R. E., Saunders G. F. Properties of 5-fluorouracil-containing ribonucleic acid and ribosomes from Bacillus subtilis. J Bacteriol. 1968 Aug;96(2):525–532. doi: 10.1128/jb.96.2.525-532.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singer M. F., Leder P. Messenger RNA: an evaluation. Annu Rev Biochem. 1966;35:195–230. doi: 10.1146/annurev.bi.35.070166.001211. [DOI] [PubMed] [Google Scholar]
  25. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  26. Tershak D. R. Effect of 5-fluorouracil on poliovirus-induced RNA polymerase. J Mol Biol. 1966 Oct 28;21(1):43–50. doi: 10.1016/0022-2836(66)90078-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES