Abstract
The presence of an active transport system for glucose-1-phosphate in Agrobacterium tumefaciens was demonstrated from the following observations. (i) The bacterium could grow on a medium containing glucose-1-phosphate as carbon source; (ii) the entry of glucose-1-phosphate into the resting cells occurred against concentration gradient obeying Michaelis-Menten kinetics; and (iii) the entry reaction was energy-dependent. The transport system for glucose-1-phosphate was formed inducibly by growing the organism on a glucose-1-phosphate or sucrose medium. From the inhibition and kinetics studies it was found that the transport system had a high specificity for glucose-1-phosphate with a high affinity, Km value of 4.5 × 10−6m at pH 8.2. The existence of glucose-1-phosphate binding factor was proved in the shock fluid which was prepared from the cells grown on both glucose-1-phosphate and sucrose media by osmotic shock.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- FRAENKEL D. G., FALCOZ-KELLY F., HORECKER B. L. THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Nov;52:1207–1213. doi: 10.1073/pnas.52.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FUKUI S. TRANSFORMATION OF GLUCOSE TO 3-KETOGLUCOSE WITH THE CELLS OF AGROBACTERIUM TUMEFACIENS. Biochem Biophys Res Commun. 1965 Jan 18;18:186–191. doi: 10.1016/0006-291x(65)90738-2. [DOI] [PubMed] [Google Scholar]
- Fukui S. Conversion of glucose-1-phosphate to 3-keto-glucose-1-phosphate by cells of Agrobacterium tumefaciens. J Bacteriol. 1969 Feb;97(2):793–798. doi: 10.1128/jb.97.2.793-798.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukui S., Hochster R. M. On the active transport of sucrose and of 3-keto-sucrose in Agrobacterium tumefaciens. Can J Biochem. 1965 Jul;43(7):1129–1141. doi: 10.1139/o65-126. [DOI] [PubMed] [Google Scholar]
- HAYASHI S., KOCH J. P., LIN E. C. ACTIVE TRANSPORT OF L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3098–3105. [PubMed] [Google Scholar]
- HORECKER B. L., THOMAS J., MONOD J. Galactose transport in Escherichia coli. I. General properties as studied in a galactokinaseless mutant. J Biol Chem. 1960 Jun;235:1580–1585. [PubMed] [Google Scholar]
- Hayano K., Fukui S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens. J Biol Chem. 1967 Aug 25;242(16):3655–3672. [PubMed] [Google Scholar]
- KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy E. P., Scarborough G. A. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport. Proc Natl Acad Sci U S A. 1967 Jul;58(1):225–228. doi: 10.1073/pnas.58.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIN E. C., KOCH J. P., CHUSED T. M., JORGENSEN S. E. Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2145–2150. doi: 10.1073/pnas.48.12.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
- Pogell B. M., Maity B. R., Frumkin S., Shapiro S. Induction of an active transport system for glucose 6-phosphate in Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):406–415. doi: 10.1016/0003-9861(66)90047-6. [DOI] [PubMed] [Google Scholar]
