Abstract
Cell-free extracts of the H37Ra strain of Mycobacterium tuberculosis contain a soluble enzyme system which catalyzes an elongation reaction of long-chain fatty acids. The predominant reaction involves the addition of a single C2 unit to the acceptor fatty acid; the elongation takes place exclusively at the carboxyl end of the acceptor molecule. The endogenous acceptor lipid can be removed by solvent extraction of the enzyme system. The lipid-depleted enzyme can be fully reactivated with external acyl coenzyme A, after which elongation with acetyl coenzyme A takes place. The elongation reaction is avidin-insensitive and does not require adenosine triphosphate. Reduced nicotinamide adenine dinucleotide is the source of reducing equivalent, whereas reduced nicotinamide adenine dinucleotide phosphate is without effect.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barron E. J. The mitochondrial fatty acid synthesizing system: general properties and acetate incorporation into monoenoic acids. Biochim Biophys Acta. 1966 Jun 1;116(3):425–440. doi: 10.1016/0005-2760(66)90113-5. [DOI] [PubMed] [Google Scholar]
- Christ E. J. Fatty acid synthesis in mitochondria. Elongation of short-chain fatty acids and formation of unsaturated long-chain fatty acids. Biochim Biophys Acta. 1968 Jan 10;152(1):50–62. doi: 10.1016/0005-2760(68)90007-6. [DOI] [PubMed] [Google Scholar]
- Dahlen J. V., Porter J. W. Studies on the synthesis of fatty acids by a beef heart mitochondrial enzyme system. Arch Biochem Biophys. 1968 Sep 20;127(1):207–223. doi: 10.1016/0003-9861(68)90218-x. [DOI] [PubMed] [Google Scholar]
- FULCO A. J., MEAD J. F. The biosynthesis of lignoceric, cerebronic, and nervonic acids. J Biol Chem. 1961 Sep;236:2416–2420. [PubMed] [Google Scholar]
- HARLAN W. R., Jr, WAKIL S. J. SYNTHESIS OF FATTY ACIDS IN ANIMAL TISSUES. I. INCORPORATION OF C14-ACETYL COENZYME A INTO A VARIETY OF LONG CHAIN FATTY ACIDS BY SUBCELLULAR PARTICLES. J Biol Chem. 1963 Oct;238:3216–3223. [PubMed] [Google Scholar]
- HOLLOWAY P. W., WAKIL S. J. SYNTHESIS OF FATTY ACIDS IN ANIMAL TISSUES. II. THE OCCURRENCE AND BIOSYNTHESIS OF CIS-VACCENIC ACID. J Biol Chem. 1964 Aug;239:2489–2495. [PubMed] [Google Scholar]
- Kanemasa Y., Goldman D. S. Direct incorporation of octanoate into long-chain fatty acids by soluble enzymes of Mycobacterium tuberculosis. Biochim Biophys Acta. 1965 Jun 1;98(3):476–485. doi: 10.1016/0005-2760(65)90144-x. [DOI] [PubMed] [Google Scholar]
- Kusaka T., Goldman D. S. Column chromatographic purification of octanoyl-CoA. Anal Biochem. 1967 May;19(2):294–299. doi: 10.1016/0003-2697(67)90165-0. [DOI] [PubMed] [Google Scholar]
- PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
- PIERARD A., GOLDMAN D. S. Enzyme systems in the mycobacteria. 14. Fatty acid synthesis in cell-free extracts of Mycobacterium tuberculosis. Arch Biochem Biophys. 1963 Jan;100:56–65. doi: 10.1016/0003-9861(63)90034-1. [DOI] [PubMed] [Google Scholar]
- YANG S. F., STUMPF P. K. FAT METABOLISM IN HIGHER PLANTS. XXII. ENZYMIC SYNTHESIS OF 14-HYDROXY-11-EICOSENOIC ACID BY PARTICULATE PREPARATIONS OF AVOCADO MESOCARP. Biochim Biophys Acta. 1965 Feb 1;98:27–35. [PubMed] [Google Scholar]