Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Mar;101(3):827–835. doi: 10.1128/jb.101.3.827-835.1970

Nucleic Acid Similarities Among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei1

M Rogul a, J J Brendle a, D K Haapala a, A D Alexander a
PMCID: PMC250398  PMID: 5438051

Abstract

Annealing experiments on membrane filters were carried out with deoxyribonucleic acids (DNA) from selected strains of the nomen-species of Pseudomonas, Actinobacillus, Chromobacterium, and Micrococcus, with the use of DNA of Pseudomonas pseudomallei and Actinobacillus mallei as reference materials. Under the usual conditions employed in these experiments, the results were not quantitatively reproducible. Incorporation of dimethylsulfoxide (DMSO) into the incubation medium greatly increased differences in comparative binding. DNA binding in agar matrices was examined in the presence and absence of DMSO at various incubation temperatures. It was found that the greatest specificity, stability, and total binding for DNA containing high amounts of guanine and cytosine occurred in the presence of DMSO. Under the most stringent annealing conditions permitted in agar, DNA species from P. pseudomallei and A. mallei in the presence of DMSO demonstrated interspecific relative bindings of 76 to 86% when compared to the homologous reactions. The thermal elution midpoints (Em) of these duplexed interspecific DNA species were quite close to the homologous Em values. The relative bindings of P. multivorans DNA types to either reference DNA ranged between 6 to 27%, and the Em values were 4 to 7 C less than those for the homologous reactions.

Full text

PDF
827

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLTON E. T., MCCARTHY B. J. FRACTIONATION OF COMPLEMENTARY RNA. J Mol Biol. 1964 Feb;8:201–209. doi: 10.1016/s0022-2836(64)80129-7. [DOI] [PubMed] [Google Scholar]
  2. Bonner J., Kung G., Bekhor I. A method for the hybridization of nucleic acid molecules at low temperature. Biochemistry. 1967 Dec;6(12):3650–3653. doi: 10.1021/bi00864a005. [DOI] [PubMed] [Google Scholar]
  3. Bonner J., Widholm J. Molecular complementarity between nuclear DNA and organ-specific chromosomal RNA. Proc Natl Acad Sci U S A. 1967 May;57(5):1379–1385. doi: 10.1073/pnas.57.5.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner D. J., Cowie D. B. Thermal stability of Escherichia coli-Salmonella typhimurium deoxyribocleic acid duplexes. J Bacteriol. 1968 Jun;95(6):2258–2262. doi: 10.1128/jb.95.6.2258-2262.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol. 1969 May;98(2):637–650. doi: 10.1128/jb.98.2.637-650.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner D. J., Martin M. A., Hoyer B. H. Deoxyribonucleic acid homologies among some bacteria. J Bacteriol. 1967 Aug;94(2):486–487. doi: 10.1128/jb.94.2.486-487.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  9. Eigner J., Doty P. The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol. 1965 Jul;12(3):549–580. doi: 10.1016/s0022-2836(65)80312-6. [DOI] [PubMed] [Google Scholar]
  10. FALKOW S., CITARELLA R. V. MOLECULAR HOMOLOGY OF F-MEROGENOTE DNA. J Mol Biol. 1965 May;12:138–151. doi: 10.1016/s0022-2836(65)80288-1. [DOI] [PubMed] [Google Scholar]
  11. Fournier J., Bussy G. Les antigènes thermostables de Pseudomonas pseudomallei et de Malleomyces mallei et leurs communautés. Ann Inst Pasteur (Paris) 1967 Jan;112(1):93–104. [PubMed] [Google Scholar]
  12. Fournier J. La mélioidose et le B. de Whitmore. Controverses épidémiologiques et taxonomiques. Bull Soc Pathol Exot Filiales. 1965 Jul-Aug;58(4):753–765. [PubMed] [Google Scholar]
  13. Greenberg L. J., Uhr J. W. DNA-RNA hybridization studies of myeloma tumors in mice. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1878–1882. doi: 10.1073/pnas.58.5.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanlon S. The importance of London dispersion forces in the maintenance of the deoxyribonucleic acid helix. Biochem Biophys Res Commun. 1966 Jun 21;23(6):861–867. doi: 10.1016/0006-291x(66)90567-5. [DOI] [PubMed] [Google Scholar]
  15. Heberlein G. T., De Ley J., Tijtgat R. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J Bacteriol. 1967 Jul;94(1):116–124. doi: 10.1128/jb.94.1.116-124.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoyer B. H., McCullough N. B. Homologies of deoxyribonucleic acids from Brucella ovis, canine abortion organisms, and other Brucella species. J Bacteriol. 1968 Nov;96(5):1783–1790. doi: 10.1128/jb.96.5.1783-1790.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson J. L., Ordal E. J. Deoxyribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J Bacteriol. 1968 Mar;95(3):893–900. doi: 10.1128/jb.95.3.893-900.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LEVINE L., GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry. 1963 Jan-Feb;2:168–175. doi: 10.1021/bi00901a030. [DOI] [PubMed] [Google Scholar]
  19. Legault-Démare J., Desseaux B., Heyman T., Séror S., Ress G. P. Studies on hybrid molecules of nucleic acids. I. DNA-DNA hybrids on nitrocellulose filters. Biochem Biophys Res Commun. 1967 Aug 23;28(4):550–557. doi: 10.1016/0006-291x(67)90349-x. [DOI] [PubMed] [Google Scholar]
  20. Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas. J Gen Microbiol. 1966 May;43(2):273–292. doi: 10.1099/00221287-43-2-273. [DOI] [PubMed] [Google Scholar]
  21. Martin M. A., Hoyer B. H. Thermal stabilities and species specificities of reannealed animal deoxyribonucleic acids. Biochemistry. 1966 Aug;5(8):2706–2713. doi: 10.1021/bi00872a030. [DOI] [PubMed] [Google Scholar]
  22. Redfearn M. S., Palleroni N. J., Stanier R. Y. A comparative study of Pseudomonas pseudomallei and Bacillus mallei. J Gen Microbiol. 1966 May;43(2):293–313. doi: 10.1099/00221287-43-2-293. [DOI] [PubMed] [Google Scholar]
  23. Rogul M., McGee Z. A., Wittler R. G., Falkow S. Nucleic acid homologies of selected bacteria, L forms, Mycoplasma species. J Bacteriol. 1965 Nov;90(5):1200–1204. doi: 10.1128/jb.90.5.1200-1204.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  25. SMITH P. B., CHERRY W. B. Identification of Malleomyces by specific bacteriophages. J Bacteriol. 1957 Nov;74(5):668–672. doi: 10.1128/jb.74.5.668-672.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Searcy D. G. Techniques for DNA hybridization in vitro using non-radioactive DNA and DNA made radioactive by neutron activation, alkylation with radioactive alkylating agents, and by exchange with 3H2O. Biochim Biophys Acta. 1968 Sep 24;166(2):360–370. doi: 10.1016/0005-2787(68)90223-2. [DOI] [PubMed] [Google Scholar]
  27. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  28. Studier F. W. Effects of the conformation of single-stranded DNA on renaturation and aggregation. J Mol Biol. 1969 Apr;41(2):199–209. doi: 10.1016/0022-2836(69)90385-4. [DOI] [PubMed] [Google Scholar]
  29. Thompson L. The Systematic Relationships of Actinobacillus. J Bacteriol. 1933 Aug;26(2):221–227. doi: 10.1128/jb.26.2.221-227.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WETMORE P. W., GOCHENOUR W. S., Jr Comparative studies of the genus Malleomyces and selected Pseudomonas species. I. Morphological and cultural characteristics. J Bacteriol. 1956 Jul;72(1):79–89. doi: 10.1128/jb.72.1.79-89.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WETMORE P. W., THIEL J. F., HERMAN Y. F., HARR J. R. COMPARISON OF SELECTED ACTINOBACILLUS SPECIES WITH A HEMOLYTIC VARIETY OF ACTINOBACILLUS FROM IRRADIATED SWINE. J Infect Dis. 1963 Nov-Dec;113:186–194. doi: 10.1093/infdis/113.3.186. [DOI] [PubMed] [Google Scholar]
  32. Yarus M., Berg P. Recognition of tRNA by aminoacyl tRNA synthetases. J Mol Biol. 1967 Sep 28;28(3):479–490. doi: 10.1016/s0022-2836(67)80098-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES