Abstract
The oxidation of ornithine in the presence of proline by crude extracts of Clostridium sticklandii cells was stimulated by nicotinamide adenine dinucleotide, coenzyme A, α-ketoglutarate, dimethylbenzimidazolyl cobamide (DBC) coenzyme, MgCl2, and adenosine diphosphate. Deletion of various cofactors resulted in the accumulation of a new dibasic amino acid which was identified as 2,4-diaminovaleric acid. Both the oxidation of ornithine to alanine and acetate and the conversion of ornithine to 2,4-diaminovaleric acid were stimulated by addition of DBC coenzyme, and both were inhibited by intrinsic factor, an inhibitor of cobamide coenzyme-dependent reactions. This inhibition was reversed by addition of DBC coenzyme. However, the oxidation of 2,4-diaminovaleric acid was insensitive to added intrinsic factor. The data indicate that 2,4-diaminovaleric acid represents the first intermediate in the oxidation of ornithine by C. sticklandii.
Full text
PDF![77](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/625f62b10634/jbacter00383-0103.png)
![78](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/279ec372a9be/jbacter00383-0104.png)
![79](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/a0e0812ad6b1/jbacter00383-0105.png)
![80](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/b93d28dfebe4/jbacter00383-0106.png)
![81](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/088da33e951b/jbacter00383-0107.png)
![82](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/150a7b787359/jbacter00383-0108.png)
![83](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6a/250453/5c9d66093bc1/jbacter00383-0109.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Costilow R. N., Laycock L. Proline as an intermediate in the reductive deamination of ornithine to delta-aminovaleric acid. J Bacteriol. 1968 Oct;96(4):1011–1020. doi: 10.1128/jb.96.4.1011-1020.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costilow R. N., Rochovansky O. M., Barker H. A. Isolation and identification of beta-lysine as an intermediate in lysine fermentation. J Biol Chem. 1966 Apr 10;241(7):1573–1580. [PubMed] [Google Scholar]
- Dekker E. E., Barker H. A. Identification and cobamide coenzyme-dependent formation of 3,5-diaminohexanoic acid, an intermediate in lysine fermentation. J Biol Chem. 1968 Jun 25;243(12):3232–3237. [PubMed] [Google Scholar]
- Dyer J. K., Costilow R. N. Fermentation of ornithine by Clostridium sticklandii. J Bacteriol. 1968 Nov;96(5):1617–1622. doi: 10.1128/jb.96.5.1617-1622.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Rimerman E. A., Barker H. A. Formation and identification of 3-keto-5-aminohexanoic acid, a probable intermediate in lysine fermentation. J Biol Chem. 1968 Dec 10;243(23):6151–6160. [PubMed] [Google Scholar]
- STADTMAN T. C. ANAEROBIC DEGRADATION OF LYSINE. II. COFACTOR REQUIREMENTS AND PROPERTIES OF THE SOLUBLE ENZYME SYSTEM. J Biol Chem. 1963 Aug;238:2766–2773. [PubMed] [Google Scholar]
- STADTMAN T. C., WHITE F. H., Jr Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J Bacteriol. 1954 Jun;67(6):651–657. doi: 10.1128/jb.67.6.651-657.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadtman T. C., Tsai L. A cobamide coenzyme dependent migration of the epsilon-amino group of D-lysine. Biochem Biophys Res Commun. 1967 Sep 27;28(6):920–926. doi: 10.1016/0006-291x(67)90067-8. [DOI] [PubMed] [Google Scholar]
- Tsai L., Stadtman T. C. Anaerobic degradation of lysine. IV. Cobamide coenzyme-dependent migration of an amino group from carbon 6 of beta-lysine (3,6-diaminohexanoate) to carbon 5 forming a new naturally occurring amino acid, 3,5-diaminohexanoate. Arch Biochem Biophys. 1968 Apr;125(1):210–225. doi: 10.1016/0003-9861(68)90656-5. [DOI] [PubMed] [Google Scholar]