Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Jan;101(1):240–249. doi: 10.1128/jb.101.1.240-249.1970

Morphogenesis and Fine Structure of Leucothrix mucor and Effects of Calcium Deficiency

James E Snellen a,1, H D Raj a
PMCID: PMC250475  PMID: 5411751

Abstract

Phenotypic expressions of morphogenesis and fine structure of Leucothrix mucor were determined when the organism was grown with and without added CaCl2 in a synthetic seawater medium. Evidence is presented to show that a bulb can form in the absence of a knot formation and that a bulb may give rise to a “germ-tube.” In comparison with normal cells, which show transverse septa at right angles to the axis in dividing cells, the bulbs exhibited transverse septa at odd angles, which may explain the mechanism of bulb formation. The most striking morphological feature due to Ca++ deficiency was the absence of rosettes; instead, the culture showed an extremely filamentous morphology and a peculiar cord formation. Also, the Ca++-deficient cells contained heavily stained intracytoplasmic granules which possibly represent tight packing of the smaller particles of ribonucleoprotein. Various bulbous forms observed in the Ca++-deficient culture showed more pronounced elaboration of mesosomes as intracytoplasmic structures than those seen in the complete medium.

Full text

PDF
240

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asbell M. A., Eagon R. G. The role of multivalent cations in the organization and structure of bacterial cell walls. Biochem Biophys Res Commun. 1966 Mar 22;22(6):664–671. doi: 10.1016/0006-291x(66)90198-7. [DOI] [PubMed] [Google Scholar]
  2. BROCK T. D. KNOTS IN LEUCOTHRIX MUCOR. Science. 1964 May 15;144(3620):870–872. doi: 10.1126/science.144.3620.870. [DOI] [PubMed] [Google Scholar]
  3. Bayer M. E. Response of Cell Walls of Escherichia coli to a Sudden Reduction of the Environmental Osmotic Pressure. J Bacteriol. 1967 Mar;93(3):1104–1112. doi: 10.1128/jb.93.3.1104-1112.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brock T. D., Mandel M. Deoxyribonucleic acid base composition of geographically diverse strains of Leucothrix mucor. J Bacteriol. 1966 Apr;91(4):1659–1660. doi: 10.1128/jb.91.4.1659-1660.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brock T. D. Mode of filamentous growth of Leucothrix mucor in pure culture and in nature, as studied by tritiated thymidine autoradiography. J Bacteriol. 1967 Mar;93(3):985–990. doi: 10.1128/jb.93.3.985-990.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. COHEN-BAZIRE G., PFENNIG N., KUNISAWA R. THE FINE STRUCTURE OF GREEN BACTERIA. J Cell Biol. 1964 Jul;22:207–225. doi: 10.1083/jcb.22.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dias F. F., Okrend H., Dondero N. C. Calcium nutrition of Sphaerotilus growing in a continuous-flow apparatus. Appl Microbiol. 1968 Sep;16(9):1364–1369. doi: 10.1128/am.16.9.1364-1369.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grula E. A., Smith G. L., Grula M. M. Cell division in a species of Erwinia. X. Morphology of the nuclear body in filaments produced by growth in the presence of D-serine. Can J Microbiol. 1968 Apr;14(4):293–298. doi: 10.1139/m68-048. [DOI] [PubMed] [Google Scholar]
  9. HAROLD R., STANIER R. Y. The genera Leucothrix and Thiothrix. Bacteriol Rev. 1955 Jun;19(2):49–64. doi: 10.1128/br.19.2.49-64.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUMPHREY B., VINCENT J. M. Calcium in cell walls of Rhizobium trifolii. J Gen Microbiol. 1962 Nov;29:557–561. doi: 10.1099/00221287-29-3-557. [DOI] [PubMed] [Google Scholar]
  11. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knox K. W., Vesk M., Work E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol. 1966 Oct;92(4):1206–1217. doi: 10.1128/jb.92.4.1206-1217.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MORITA R. Y., STAVE P. W. ELECTRON MICROGRAPH OF AN ULTRATHIN SECTION OF BEGGIATOA. J Bacteriol. 1963 Apr;85:940–942. doi: 10.1128/jb.85.4.940-942.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maier S., Murray R. G. The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Can J Microbiol. 1965 Aug;11(4):645–655. doi: 10.1139/m65-087. [DOI] [PubMed] [Google Scholar]
  16. Noller E. C., Durham N. N. Sealed aerobic slide culture for photomicrography. Appl Microbiol. 1968 Feb;16(2):439–440. doi: 10.1128/am.16.2.439-440.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PRINGSHEIM E. G. Observations on Leucothrix mucor and Leucothrix cohaerens nov. sp. with a survey of colorless filamentous organisms. Bacteriol Rev. 1957 Jun;21(2):69–81. doi: 10.1128/br.21.2.69-81.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raj H. D. Radiorespirometric studies of Leucothrix mucor. J Bacteriol. 1967 Sep;94(3):615–623. doi: 10.1128/jb.94.3.615-623.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seidler R. J., Starr M. P. Factors affecting the intracellular parasitic growth of Bdellovibrio bacteriovorus developing within Escherichia coli. J Bacteriol. 1969 Feb;97(2):912–923. doi: 10.1128/jb.97.2.912-923.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steed P., Murray R. G. The cell wall and cell division of gram-negative bacteria. Can J Microbiol. 1966 Apr;12(2):263–270. doi: 10.1139/m66-036. [DOI] [PubMed] [Google Scholar]
  21. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wiebe W. J., Chapman G. B. Variation in the fine structure of a marine achromobacter and a marine pseudomonad grown under selected nutritional and temperature regimes. J Bacteriol. 1968 May;95(5):1874–1886. doi: 10.1128/jb.95.5.1874-1886.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. YEGIAN D., KURUNG J. Growth pattern and virulence of tubercle bacilli. Am Rev Tuberc. 1952 Feb;65(2):181–186. doi: 10.1164/art.1952.65.2.181. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES