Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1988 Jan;62(1):20–26. doi: 10.1128/jvi.62.1.20-26.1988

Antibody-mediated growth of influenza A NWS virus in macrophagelike cell line P388D1.

H Ochiai 1, M Kurokawa 1, K Hayashi 1, S Niwayama 1
PMCID: PMC250496  PMID: 3334744

Abstract

We investigated the internalization and growth of influenza A NWS virus in macrophagelike P388D1 cells. Flow cytometric analysis using fluorescein isothiocyanate-labeled virus showed that the attachment of normal rabbit serum-exposed virus (NS-V) to neuraminidase (NA)-treated cells was noticeably limited compared with that to untreated cells. However, rabbit antiserum-exposed virus (AS-V) could attach equally well to both cells. Virus coated with Fab prepared from antiviral immunoglobulin G could not attach. These data suggest that the NWS virus can infect P388D1 cells in one of two ways, via viral or via Fc receptors, depending on the presence of antibodies. The NS-V could grow in the untreated cells, but not in the NA-treated cells. The highest growth of AS-V in the NA-treated cells was observed at an antibody concentration showing 50% plaque reduction titer. Growth was exponentially decreased toward the lower and higher dilutions of antibodies. By using three different immunoglobulin G subclasses of monoclonal antibodies against hemagglutinin, it was demonstrated that both Fc receptors I and II could take part in this phenomenon. The presence of 20 mM NH4Cl inhibited the growth of both AS-V and NS-V, suggesting that the intracellular pathways after internalization via Fc or viral receptors are similar. These data indicate that the concentration of antibodies has a critical role on the antibody-mediated growth of influenza virus in macrophages.

Full text

PDF
20

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchmeier N. A., Gee S. R., Murphy F. A., Rawls W. E. Abortive replication of vaccinia virus in activated rabbit macrophages. Infect Immun. 1979 Oct;26(1):328–338. doi: 10.1128/iai.26.1.328-338.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burstin S. J., Brandriss M. W., Schlesinger J. J. Infection of a macrophage-like cell line, P388D1 with reovirus; effects of immune ascitic fluids and monoclonal antibodies on neutralization and on enhancement of viral growth. J Immunol. 1983 Jun;130(6):2915–2919. [PubMed] [Google Scholar]
  3. Gollins S. W., Porterfield J. S. A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature. 1986 May 15;321(6067):244–246. doi: 10.1038/321244a0. [DOI] [PubMed] [Google Scholar]
  4. Halstead S. B. Immune enhancement of viral infection. Prog Allergy. 1982;31:301–364. [PubMed] [Google Scholar]
  5. Halstead S. B., O'Rourke E. J. Antibody-enhanced dengue virus infection in primate leukocytes. Nature. 1977 Feb 24;265(5596):739–741. doi: 10.1038/265739a0. [DOI] [PubMed] [Google Scholar]
  6. Halstead S. B., O'Rourke E. J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med. 1977 Jul 1;146(1):201–217. doi: 10.1084/jem.146.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hawkes R. A., Lafferty K. J. The enchancement of virus infectivity by antibody. Virology. 1967 Oct;33(2):250–261. doi: 10.1016/0042-6822(67)90144-4. [DOI] [PubMed] [Google Scholar]
  8. Henricks P. A., van Erne-van der Tol M. E., Verhoef J. Partial removal of sialic acid enhances phagocytosis and the generation of superoxide and chemiluminescence by polymorphonuclear leukocytes. J Immunol. 1982 Aug;129(2):745–750. [PubMed] [Google Scholar]
  9. KJELLEN L. E., SCHLESINGER R. W. Influence of host cell on residual infectivity of neutralized vesicular stomatitis virus. Virology. 1959 Feb;7(2):236–239. doi: 10.1016/0042-6822(59)90189-8. [DOI] [PubMed] [Google Scholar]
  10. Kida H., Webster R. G., Yanagawa R. Inhibition of virus-induced hemolysis with monoclonal antibodies to different antigenic areas on the hemagglutinin molecule of A/seal/Massachusetts/1/80 (H7N7) influenza virus. Arch Virol. 1983;76(2):91–99. doi: 10.1007/BF01311693. [DOI] [PubMed] [Google Scholar]
  11. Kliks S. C., Halstead S. B. An explanation for enhanced virus plaque formation in chick embryo cells. Nature. 1980 Jun 12;285(5765):504–505. doi: 10.1038/285504a0. [DOI] [PubMed] [Google Scholar]
  12. Koren H. S., Handwerger B. S., Wunderlich J. R. Identification of macrophage-like characteristics in a cultured murine tumor line. J Immunol. 1975 Feb;114(2 Pt 2):894–897. [PubMed] [Google Scholar]
  13. LAFFERTY K. J. THE INTERACTION BETWEEN VIRUS AND ANTIBODY. I. KINETIC STUDIES. Virology. 1963 Sep;21:61–75. doi: 10.1016/0042-6822(63)90305-2. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Levitt N. H., Miller H. V., Edelman R. Interaction of alphaviruses with human peripheral leukocytes: in vitro replication of Venezuelan equine encephalomyelitis virus in monocyte cultures. Infect Immun. 1979 Jun;24(3):642–646. doi: 10.1128/iai.24.3.642-646.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mantovani B., Rabinovitch M., Nussenzweig V. Phagocytosis of immune complexes by macrophages. Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG). J Exp Med. 1972 Apr 1;135(4):780–792. doi: 10.1084/jem.135.4.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem J. 1984 Feb 15;218(1):1–10. doi: 10.1042/bj2180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matlin K. S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mims C. A., Gould J. The role of macrophages in mice infected with murine cytomegalovirus. J Gen Virol. 1978 Oct;41(1):143–153. doi: 10.1099/0022-1317-41-1-143. [DOI] [PubMed] [Google Scholar]
  20. Mogensen S. C. Role of macrophages in natural resistance to virus infections. Microbiol Rev. 1979 Mar;43(1):1–26. doi: 10.1128/mr.43.1.1-26.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peiris J. S., Porterfield J. S. Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines. Nature. 1979 Nov 29;282(5738):509–511. doi: 10.1038/282509a0. [DOI] [PubMed] [Google Scholar]
  23. SCHULMAN J. L., KILBOURNE E. D. INDUCTION OF PARTIAL SPECIFIC HETEROTYPIC IMMUNITY IN MICE BY A SINGLE INFECTION WITH INFLUENZA A VIRUS. J Bacteriol. 1965 Jan;89:170–174. doi: 10.1128/jb.89.1.170-174.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlesinger J. J., Brandriss M. W. Antibody-mediated infection of macrophages and macrophage-like cell lines with 17D-yellow fever virus. J Med Virol. 1981;8(2):103–117. doi: 10.1002/jmv.1890080204. [DOI] [PubMed] [Google Scholar]
  25. Schlesinger J. J., Brandriss M. W. Growth of 17D yellow fever virus in a macrophage-like cell line, U937: role of Fc and viral receptors in antibody-mediated infection. J Immunol. 1981 Aug;127(2):659–665. [PubMed] [Google Scholar]
  26. Stevens J. G., Cook M. L. Restriction of herpes simplex virus by macrophages. An analysis of the cell-virus interaction. J Exp Med. 1971 Jan 1;133(1):19–38. doi: 10.1084/jem.133.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takenaga K. Characterization of low- and high-metastatic clones isolated from a Lewis lung carcinoma. Gan. 1984 Jan;75(1):61–71. [PubMed] [Google Scholar]
  28. Unkeless J. C., Eisen H. N. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J Exp Med. 1975 Dec 1;142(6):1520–1533. doi: 10.1084/jem.142.6.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watanabe E., Kawashima K., Isobe K., Yamada K., Saga S., Takahashi T. Tumorigenicity and immunogenicity of somatic cell hybrids between L1210 mouse leukemia cell and L-fibroblast. Nihon Ketsueki Gakkai Zasshi. 1983 Feb;46(1):121–129. [PubMed] [Google Scholar]
  30. Webster R. G., Askonas B. A. Cross-protection and cross-reactive cytotoxic T cells induced by influenza virus vaccines in mice. Eur J Immunol. 1980 May;10(5):396–401. doi: 10.1002/eji.1830100515. [DOI] [PubMed] [Google Scholar]
  31. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys. 1983 May;16(2):151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  32. Yoshimura A., Ohnishi S. Uncoating of influenza virus in endosomes. J Virol. 1984 Aug;51(2):497–504. doi: 10.1128/jvi.51.2.497-504.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Drunen Littel-van den Hurk S., van den Hurk J. V., Gilchrist J. E., Misra V., Babiuk L. A. Interactions of monoclonal antibodies and bovine herpesvirus type 1 (BHV-1) glycoproteins: characterization of their biochemical and immunological properties. Virology. 1984 Jun;135(2):466–479. doi: 10.1016/0042-6822(84)90201-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES