Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1988 Jan;62(1):346–348. doi: 10.1128/jvi.62.1.346-348.1988

Suppression of RNA synthesis by a specific antiviral activity in Sindbis virus-infected Aedes albopictus cells.

L D Condreay 1, D T Brown 1
PMCID: PMC250536  PMID: 2824854

Abstract

An antiviral protein is released by mosquito cells persistently infected with Sindbis virus. Differences in both sensitivity to and production of this virus-specific activity were apparent in three independently produced Aedes albopictus cell lines. This activity inhibits total viral RNA synthesis in a time-dependent manner. The antiviral effect is maximally realized when cells are treated with the activity 48 h before infections. These data suggest that the antiviral activity induces an antiviral state in treated cells which prevents the formation or efficient function of viral RNA-synthesizing complexes.

Full text

PDF
346

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baric R. S., Carlin L. J., Johnston R. E. Requirement for host transcription in the replication of Sindbis virus. J Virol. 1983 Jan;45(1):200–205. doi: 10.1128/jvi.45.1.200-205.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baric R. S., Lineberger D. W., Johnston R. E. Reduced synthesis of Sindbis virus negative strand RNA in cultures treated with host transcription inhibitors. J Virol. 1983 Jul;47(1):46–54. doi: 10.1128/jvi.47.1.46-54.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burge B. W., Pfefferkorn E. R. Isolation and characterization of conditional-lethal mutants of Sindbis virus. Virology. 1966 Oct;30(2):204–213. doi: 10.1016/0042-6822(66)90096-1. [DOI] [PubMed] [Google Scholar]
  4. Condreay L. D., Brown D. T. Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells. J Virol. 1986 Apr;58(1):81–86. doi: 10.1128/jvi.58.1.81-86.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  6. Fuller F. J., Marcus P. I. Interferon induction by viruses. Sindbis virus: defective-interfering particles temperature-sensitive for interferon induction. J Gen Virol. 1980 Jun;48(Pt 2):391–394. doi: 10.1099/0022-1317-48-2-391. [DOI] [PubMed] [Google Scholar]
  7. Ghubril V. A. Blockage of antiviral induction of interferon by homologous cell biochemical activity: effect of chicken embryo fibroblast mitotic cell cycle phases on Sindbis virus growth. J Virol. 1983 Sep;47(3):637–641. doi: 10.1128/jvi.47.3.637-641.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Igarashi A. Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol. 1978 Sep;40(3):531–544. doi: 10.1099/0022-1317-40-3-531. [DOI] [PubMed] [Google Scholar]
  9. Inglot A. D., Albin M., Chudzio T. Persistent infection of mouse cells with Sindbis virus: role of virulence of strains, auto-interfering particles and interferon. J Gen Virol. 1973 Jul;20(1):105–110. doi: 10.1099/0022-1317-20-1-105. [DOI] [PubMed] [Google Scholar]
  10. Newton S. E., Dalgarno L. Antiviral activity released from Aedes albopictus cells persistently infected with Semliki forest virus. J Virol. 1983 Sep;47(3):652–655. doi: 10.1128/jvi.47.3.652-655.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Newton S. E., Short N. J., Dalgarno L. Bunyamwera virus replication in cultured Aedes albopictus (mosquito) cells: establishment of a persistent viral infection. J Virol. 1981 Jun;38(3):1015–1024. doi: 10.1128/jvi.38.3.1015-1024.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Renz D., Brown D. T. Characteristics of Sindbis virus temperature-sensitive mutants in cultured BHK-21 and Aedes albopictus (Mosquito) cells. J Virol. 1976 Sep;19(3):775–781. doi: 10.1128/jvi.19.3.775-781.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Riedel B., Brown D. T. Novel antiviral activity found in the media of Sindbis virus-persistently infected mosquito (Aedes albopictus) cell cultures. J Virol. 1979 Jan;29(1):51–60. doi: 10.1128/jvi.29.1.51-60.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Riedel B., Brown D. T. Role of extracellular virus on the maintenance of the persistent infection induced in Aedes albopictus (mosquito) cells by Sindbis virus. J Virol. 1977 Sep;23(3):554–561. doi: 10.1128/jvi.23.3.554-561.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  16. Sarver N., Stollar V. Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells. Virology. 1977 Jul 15;80(2):390–400. doi: 10.1016/s0042-6822(77)80014-7. [DOI] [PubMed] [Google Scholar]
  17. Scheefers-Borchel U., Scheefers H., Edwards J., Brown D. T. Sindbis virus maturation in cultured mosquito cells is sensitive to actinomycin D. Virology. 1981 Apr 30;110(2):292–301. doi: 10.1016/0042-6822(81)90061-1. [DOI] [PubMed] [Google Scholar]
  18. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES