Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Aug;63(8):3279–3283. doi: 10.1128/jvi.63.8.3279-3283.1989

Rotavirus-specific protein synthesis is not necessary for recognition of infected cells by virus-specific cytotoxic T lymphocytes.

P A Offit 1, H B Greenberg 1, K I Dudzik 1
PMCID: PMC250899  PMID: 2545904

Abstract

We found that rotavirus-specific protein synthesis was not necessary for recognition by virus-specific cytotoxic T lymphocytes (CTLs). In addition, CTLs lysed rotavirus-infected target cells prior to production of infectious virus. Target cell processing of rotavirus antigens for presentation to CTLs was enhanced by treatment of rotavirus with trypsin prior to infection; trypsin-induced cleavage of the viral hemagglutinin (vp4) has previously been found to facilitate rotavirus entry into target cells by direct penetration of virions through the plasma membrane. We conclude that sufficient quantities of exogenous viral proteins may be introduced into the cytoplasm for processing by target cells. The mechanism by which rotavirus proteins are processed for presentation to the target cell surface remains to be determined.

Full text

PDF
3279

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangham C. R., Cannon M. J., Karzon D. T., Askonas B. A. Cytotoxic T-cell response to respiratory syncytial virus in mice. J Virol. 1985 Oct;56(1):55–59. doi: 10.1128/jvi.56.1.55-59.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black R. E., Merson M. H., Rahman A. S., Yunus M., Alim A. R., Huq I., Yolken R. H., Curlin G. T. A two-year study of bacterial, viral, and parasitic agents associated with diarrhea in rural Bangladesh. J Infect Dis. 1980 Nov;142(5):660–664. doi: 10.1093/infdis/142.5.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Estes M. K., Palmer E. L., Obijeski J. F. Rotaviruses: a review. Curr Top Microbiol Immunol. 1983;105:123–184. doi: 10.1007/978-3-642-69159-1_3. [DOI] [PubMed] [Google Scholar]
  4. Fukuhara N., Yoshie O., Kitaoka S., Konno T. Role of VP3 in human rotavirus internalization after target cell attachment via VP7. J Virol. 1988 Jul;62(7):2209–2218. doi: 10.1128/jvi.62.7.2209-2218.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gething M., Koszinowski U., Waterfield M. Fusion of Sendai virus with the target cell membrane is required for T cell cytotoxicity. Nature. 1978 Aug 17;274(5672):689–691. doi: 10.1038/274689a0. [DOI] [PubMed] [Google Scholar]
  6. Hapel A. J., Bablanian R., Cole G. A. Inductive requirements for the generation of virus-specific T lymphocytes. I. The nature of the host cell-virus interaction that triggers secondary poxvirus-specific cytotoxic T lymphocyte induction. J Immunol. 1978 Aug;121(2):736–743. [PubMed] [Google Scholar]
  7. Hosaka Y., Sasao F., Ohara R. Cell-mediated lysis of heat-inactivated influenza virus-coated murine targets. Vaccine. 1985 Sep;3(3 Suppl):245–251. doi: 10.1016/0264-410x(85)90116-1. [DOI] [PubMed] [Google Scholar]
  8. Jackson D. C., Ada G. L., Tha Hla R. Cytotoxic T cells recognize very early, minor changes in ectromelia virus-infected target cells. Aust J Exp Biol Med Sci. 1976 Aug;54(4):349–363. doi: 10.1038/icb.1976.35. [DOI] [PubMed] [Google Scholar]
  9. Kalica A. R., James J. D., Jr, Kapikian A. Z. Hemagglutination by simian rotavirus. J Clin Microbiol. 1978 Mar;7(3):314–315. doi: 10.1128/jcm.7.3.314-315.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaljot K. T., Shaw R. D., Rubin D. H., Greenberg H. B. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol. 1988 Apr;62(4):1136–1144. doi: 10.1128/jvi.62.4.1136-1144.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kapikian A. Z., Flores J., Hoshino Y., Glass R. I., Midthun K., Gorziglia M., Chanock R. M. Rotavirus: the major etiologic agent of severe infantile diarrhea may be controllable by a "Jennerian" approach to vaccination. J Infect Dis. 1986 May;153(5):815–822. doi: 10.1093/infdis/153.5.815. [DOI] [PubMed] [Google Scholar]
  12. Kapikian A. Z., Kim H. W., Wyatt R. G., Cline W. L., Arrobio J. O., Brandt C. D., Rodriguez W. J., Sack D. A., Chanock R. M., Parrott R. H. Human reovirus-like agent as the major pathogen associated with "winter" gastroenteritis in hospitalized infants and young children. N Engl J Med. 1976 Apr 29;294(18):965–972. doi: 10.1056/NEJM197604292941801. [DOI] [PubMed] [Google Scholar]
  13. Kohl S., Harmon M. W., Tang J. P. Cytokine-stimulated human natural killer cytotoxicity: response to rotavirus-infected cells. Pediatr Res. 1983 Nov;17(11):868–872. doi: 10.1203/00006450-198311000-00006. [DOI] [PubMed] [Google Scholar]
  14. Koszinowski U., Gething M. J., Waterfield M. T-cell cytotoxicity in the absence of viral protein synthesis in target cells. Nature. 1977 May 12;267(5607):160–163. doi: 10.1038/267160a0. [DOI] [PubMed] [Google Scholar]
  15. Little L. M., Shadduck J. A. Pathogenesis of rotavirus infection in mice. Infect Immun. 1982 Nov;38(2):755–763. doi: 10.1128/iai.38.2.755-763.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu M., Offit P. A., Estes M. K. Identification of the simian rotavirus SA11 genome segment 3 product. Virology. 1988 Mar;163(1):26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
  17. Mallon V. R., Domber E. A., Holowczak J. A. Vaccinia virus proteins on the plasma membranes of infected cells. II. Expression of viral antigens and killing of infected cells by vaccinia virus-specific cytotoxic T cells. Virology. 1985 Aug;145(1):1–23. doi: 10.1016/0042-6822(85)90197-7. [DOI] [PubMed] [Google Scholar]
  18. McCrae M. A., Faulkner-Valle G. P. Molecular biology of rotaviruses. I. Characterization of basic growth parameters and pattern of macromolecular synthesis. J Virol. 1981 Aug;39(2):490–496. doi: 10.1128/jvi.39.2.490-496.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrison L. A., Lukacher A. E., Braciale V. L., Fan D. P., Braciale T. J. Differences in antigen presentation to MHC class I-and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J Exp Med. 1986 Apr 1;163(4):903–921. doi: 10.1084/jem.163.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Offit P. A., Clark H. F., Stroop W. G., Twist E. M., Plotkin S. A. The cultivation of human rotavirus, strain 'Wa', to high titer in cell culture and characterization of the viral structural polypeptides. J Virol Methods. 1983 Jul;7(1):29–40. doi: 10.1016/0166-0934(83)90020-4. [DOI] [PubMed] [Google Scholar]
  21. Offit P. A., Dudzik K. I. Rotavirus-specific cytotoxic T lymphocytes cross-react with target cells infected with different rotavirus serotypes. J Virol. 1988 Jan;62(1):127–131. doi: 10.1128/jvi.62.1.127-131.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Owen J. A., Dudzik K. I., Klein L., Dorer D. R. The kinetics of generation of influenza-specific cytotoxic T-lymphocyte precursor cells. Cell Immunol. 1988 Jan;111(1):247–252. doi: 10.1016/0008-8749(88)90067-6. [DOI] [PubMed] [Google Scholar]
  23. Pfizenmaier K., Jung H., Starzinski-Powitz A., Röllinghoff M., Wagner H. The role of T cells in anti-herpes simplex virus immunity. I. Induction of antigen-specific cytotoxic T lymphocytes. J Immunol. 1977 Sep;119(3):939–944. [PubMed] [Google Scholar]
  24. ROBERTS J. J., WARWICK G. P. THE REACTION OF BETA-PROPIOLACTONE WITH GUANOSINE, DEOXYGUANYLIC ACID AND RNA. Biochem Pharmacol. 1963 Dec;12:1441–1442. doi: 10.1016/0006-2952(63)90216-8. [DOI] [PubMed] [Google Scholar]
  25. Riepenhoff-Talty M., Suzuki H., Ogra P. L. Characteristics of the cell-mediated immune response to rotavirus in suckling mice. Dev Biol Stand. 1983;53:263–268. [PubMed] [Google Scholar]
  26. Sabara M., Gilchrist J. E., Hudson G. R., Babiuk L. A. Preliminary characterization of an epitope involved in neutralization and cell attachment that is located on the major bovine rotavirus glycoprotein. J Virol. 1985 Jan;53(1):58–66. doi: 10.1128/jvi.53.1.58-66.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Starkey W. G., Collins J., Wallis T. S., Clarke G. J., Spencer A. J., Haddon S. J., Osborne M. P., Candy D. C., Stephen J. Kinetics, tissue specificity and pathological changes in murine rotavirus infection of mice. J Gen Virol. 1986 Dec;67(Pt 12):2625–2634. doi: 10.1099/0022-1317-67-12-2625. [DOI] [PubMed] [Google Scholar]
  28. Sugamura K., Shimizu K., Zarling D. A., Bach F. H. Role of sendai virus fusion-glycoprotein in target cell susceptibility to cytotoxic T cells. Nature. 1977 Nov 17;270(5634):251–253. doi: 10.1038/270251a0. [DOI] [PubMed] [Google Scholar]
  29. Totterdell B. M., Banatvala J. E., Chrystie I. L., Ball G., Cubitt W. D. Systemic lymphoproliferative responses to rotavirus. J Med Virol. 1988 May;25(1):37–44. doi: 10.1002/jmv.1890250106. [DOI] [PubMed] [Google Scholar]
  30. Walsh J. A., Warren K. S. Selective primary health care: an interim strategy for disease control in developing countries. N Engl J Med. 1979 Nov 1;301(18):967–974. doi: 10.1056/NEJM197911013011804. [DOI] [PubMed] [Google Scholar]
  31. Wiktor T. J., Aaslestad H. G., Kaplan M. M. Immunogenicity of rabies virus inactivated by -propiolactone, acetylethyleneimine, and ionizing irradiation. Appl Microbiol. 1972 May;23(5):914–918. doi: 10.1128/am.23.5.914-918.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yewdell J. W., Bennink J. R., Hosaka Y. Cells process exogenous proteins for recognition by cytotoxic T lymphocytes. Science. 1988 Feb 5;239(4840):637–640. doi: 10.1126/science.3257585. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES