Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1989 Sep;63(9):3865–3869. doi: 10.1128/jvi.63.9.3865-3869.1989

Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent.

G M Springett 1, R C Moen 1, S Anderson 1, R M Blaese 1, W F Anderson 1
PMCID: PMC250981  PMID: 2788225

Abstract

The role of the host cell cycle in determining the efficiency of infection with amphotropically packaged retroviral vectors was investigated in T lymphocytes and in fibroblasts. For T lymphocytes, the efficiency of infection with a retroviral vector was dependent on the cell cycle distribution of cells in culture at the time of exposure to the vector. When cultures enriched in the G0-G1 phase of the cell cycle (by serum starvation, aphidicolin treatment, or centrifugal elutriation) were exposed to retroviral vectors, the infection efficiency was severalfold lower than that in similar cultures enriched in the S, G2, and M phases. For fibroblasts, the efficiency of infection was not cell cycle dependent. These findings are relevant for studies with retrovirus-mediated gene transfer into hematopoietic tissues.

Full text

PDF
3865

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. F. Prospects for human gene therapy. Science. 1984 Oct 26;226(4673):401–409. doi: 10.1126/science.6093246. [DOI] [PubMed] [Google Scholar]
  2. Ashihara T., Baserga R. Cell synchronization. Methods Enzymol. 1979;58:248–262. doi: 10.1016/s0076-6879(79)58141-5. [DOI] [PubMed] [Google Scholar]
  3. Baker R. S., Simons P. J. Alterations in the susceptibility of cultured mouse cells to transformation by murine sarcoma virus (HARVEY). J Gen Virol. 1971 Aug;12(2):95–104. doi: 10.1099/0022-1317-12-2-95. [DOI] [PubMed] [Google Scholar]
  4. Boettiger D., Temin H. M. Light inactivation of focus formation by chicken embryo fibroblasts infected with avian sarcoma virus in the presence of 5-bromodeoxyuridine. Nature. 1970 Nov 14;228(5272):622–624. doi: 10.1038/228622a0. [DOI] [PubMed] [Google Scholar]
  5. Chen I. S., Temin H. M. Establishment of infection by spleen necrosis virus: inhibition in stationary cells and the role of secondary infection. J Virol. 1982 Jan;41(1):183–191. doi: 10.1128/jvi.41.1.183-191.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fritsch E. F., Temin H. M. Inhibition of viral DNA synthesis in stationary chicken embryo fibroblasts infected with avian retroviruses. J Virol. 1977 Nov;24(2):461–469. doi: 10.1128/jvi.24.2.461-469.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gray J. W., Coffino P. Cell cycle analysis by flow cytometry. Methods Enzymol. 1979;58:233–248. doi: 10.1016/s0076-6879(79)58140-3. [DOI] [PubMed] [Google Scholar]
  8. Hagino-Yamagishi K., Kano K., Mano Y. Effects of aphidicolin on retrovirus DNA synthesis in vivo. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1372–1378. doi: 10.1016/s0006-291x(81)80163-5. [DOI] [PubMed] [Google Scholar]
  9. Harel J., Rassart E., Jolicoeur P. Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology. 1981 Apr 15;110(1):202–207. doi: 10.1016/0042-6822(81)90022-2. [DOI] [PubMed] [Google Scholar]
  10. Hobom-Schnegg B., Robinson H. L., Robinson W. S. Replication of Rous sarcoma virus in synchronized cells. J Gen Virol. 1970;7(2):85–93. doi: 10.1099/0022-1317-7-2-85. [DOI] [PubMed] [Google Scholar]
  11. Hsu T. W., Taylor J. M. Effect of aphidicolin on avian sarcoma virus replication. J Virol. 1982 Nov;44(2):493–498. doi: 10.1128/jvi.44.2.493-498.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaiser N., Bourne H. R., Insel P. A., Coffino P. Regulation of phosphodiesterase and ornithine decarboxylase by cAMP is cell cycle independent. J Cell Physiol. 1979 Dec;101(3):369–374. doi: 10.1002/jcp.1041010304. [DOI] [PubMed] [Google Scholar]
  13. Kantoff P. W., Gillio A. P., McLachlin J. R., Bordignon C., Eglitis M. A., Kernan N. A., Moen R. C., Kohn D. B., Yu S. F., Karson E. Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer. J Exp Med. 1987 Jul 1;166(1):219–234. doi: 10.1084/jem.166.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kantoff P. W., Kohn D. B., Mitsuya H., Armentano D., Sieberg M., Zwiebel J. A., Eglitis M. A., McLachlin J. R., Wiginton D. A., Hutton J. J. Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6563–6567. doi: 10.1073/pnas.83.17.6563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohn D. B., Kantoff P. W., Eglitis M. A., McLachlin J. R., Moen R. C., Karson E., Zwiebel J. A., Nienhuis A., Karlsson S., O'Reilly R. Retroviral-mediated gene transfer into mammalian cells. Blood Cells. 1987;13(1-2):285–298. [PubMed] [Google Scholar]
  16. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pedrali-Noy G., Spadari S., Miller-Faurès A., Miller A. O., Kruppa J., Koch G. Synchronization of HeLa cell cultures by inhibition of DNA polymerase alpha with aphidicolin. Nucleic Acids Res. 1980 Jan 25;8(2):377–387. doi: 10.1093/nar/8.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richter A., Ozer H. L., DesGroseillers L., Jolicoeur P. An X-linked gene affecting mouse cell DNA synthesis also affects production of unintegrated linear and supercoiled DNA of murine leukemia virus. Mol Cell Biol. 1984 Jan;4(1):151–159. doi: 10.1128/mcb.4.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spadari S., Pedrali-Noy G., Focher F., Montecucco A., Bordoni T., Geroni C., Giuliani F. C., Ventrella G., Arcamone F., Ciarrocchi G. DNA polymerases and DNA topoisomerases as targets for the development of anticancer drugs. Anticancer Res. 1986 Sep-Oct;6(5):935–940. [PubMed] [Google Scholar]
  20. Varmus H. E., Padgett T., Heasley S., Simon G., Bishop J. M. Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell. 1977 Jun;11(2):307–319. doi: 10.1016/0092-8674(77)90047-2. [DOI] [PubMed] [Google Scholar]
  21. Weiss R. A. Cell transformation induced by Rous sarcoma virus: analysis of density dependence. Virology. 1971 Nov;46(2):200–220. [PubMed] [Google Scholar]
  22. Yoshikura H. Radiological studies on the chronological relation between murine sarcoma virus infection and cell cycle. J Gen Virol. 1970 Aug;8(2):113–120. doi: 10.1099/0022-1317-8-2-113. [DOI] [PubMed] [Google Scholar]
  23. van der Weyden M. B., Bailey L. A micromethod for determining adenosine deaminase and purine nucleoside phosphorylase activity in cells from human peripheral blood. Clin Chim Acta. 1978 Jan 2;82(1-2):179–184. doi: 10.1016/0009-8981(78)90041-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES