Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Jul;111(1):112–118. doi: 10.1128/jb.111.1.112-118.1972

Documentation of Auxotrophic Mutation in Blue-Green Bacteria: Characterization of a Tryptophan Auxotroph in Agmenellum quadruplicatum

Lonnie O Ingram a, Duane Pierson a, James F Kane a,1, C Van Baalen a, Roy A Jensen a
PMCID: PMC251247  PMID: 4204902

Abstract

A tryptophan-requiring auxotroph of Agmenellum quadruplicatum strain BG1, a species of blue-green bacteria, was isolated by means of a nitrosoguanidine-penicillin procedure. Its growth characteristics were determined, and the enzymological block was identified in the A activity of tryptophan synthetase. Starvation of the auxotroph for tryptophan resulted in the derepression of the synthesis of all five enzymes. The first four enzymes derepressed 2- to 3-fold, and tryptophan synthetase B derepressed 20-fold. In the parental prototroph, BG1, anthranilate synthetase was active in crude extracts with ammonia as the amino donor reactant, but not with glutamine.

Full text

PDF
112

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asato Y., Folsome C. E. Mutagenesis of Anacystis nidulans by n-methyl-n'-nitro-N-nitroso-guanidine and UV irradiation. Mutat Res. 1969 Nov-Dec;8(3):531–536. doi: 10.1016/0027-5107(69)90070-0. [DOI] [PubMed] [Google Scholar]
  2. Crawford I. P., Gunsalus I. C. Inducibility of tryptophan synthetase in Pseudomonas putida. Proc Natl Acad Sci U S A. 1966 Aug;56(2):717–724. doi: 10.1073/pnas.56.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gibson F. Chorismic acid: purification and some chemical and physical studies. Biochem J. 1964 Feb;90(2):256–261. doi: 10.1042/bj0900256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hegeman G. D., Rosenberg S. L. The evolution of bacterial enzyme systems. Annu Rev Microbiol. 1970;24:429–462. doi: 10.1146/annurev.mi.24.100170.002241. [DOI] [PubMed] [Google Scholar]
  5. Hood W., Carr N. G. Apparent lack of control by repression of arginine metabolism in blue-green algae. J Bacteriol. 1971 Jul;107(1):365–367. doi: 10.1128/jb.107.1.365-367.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hood W., Leaver A. G., Carr N. G. Extracellular nitrogen and the control of arginine biosynthesis in Anabaena variabilis. Biochem J. 1969 Aug;114(1):12P–12P. doi: 10.1042/bj1140012pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kane J. F., Holmes W. M., Jensen R. A. Metabolic interlock. The dual function of a folate pathway gene as an extra-operonic gene of tryptophan biosynthesis. J Biol Chem. 1972 Mar 10;247(5):1587–1596. [PubMed] [Google Scholar]
  8. Kane J. F., Jensen R. A. The molecular aggregation of anthranilate synthase in Bacillus subtilis. Biochem Biophys Res Commun. 1970 Oct 23;41(2):328–333. doi: 10.1016/0006-291x(70)90507-3. [DOI] [PubMed] [Google Scholar]
  9. Li S. L., Rédei G. P., Gowans C. S. A phylogenetic comparison of mutation spectra. Mol Gen Genet. 1967;100(1):77–83. doi: 10.1007/BF00425777. [DOI] [PubMed] [Google Scholar]
  10. Meduski J. W., Zamenhof S. Quantitative determination of methylindoles. Anal Biochem. 1968 Aug;24(2):202–208. doi: 10.1016/0003-2697(68)90171-1. [DOI] [PubMed] [Google Scholar]
  11. PROVASOLI L., MCLAUGHLIN J. J., DROOP M. R. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392–428. doi: 10.1007/BF00446694. [DOI] [PubMed] [Google Scholar]
  12. Pearce J., Carr N. G. The incorporation and metabolism of glucose by Anabaena variabilis. J Gen Microbiol. 1968 Dec;54(3):451–462. doi: 10.1099/00221287-54-3-451. [DOI] [PubMed] [Google Scholar]
  13. Pearce J., Carr N. G. The metabolism of acetate by the blue-green algae, Anabaena variabilis and Anacystis nidulans. J Gen Microbiol. 1967 Nov;49(2):301–313. doi: 10.1099/00221287-49-2-301. [DOI] [PubMed] [Google Scholar]
  14. Pearce J., Leach C. K., Carr N. G. The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol. 1969 Mar;55(3):371–378. doi: 10.1099/00221287-55-3-371. [DOI] [PubMed] [Google Scholar]
  15. RITTENBERG S. C., GRADY R. P. Induced mutants of Thiobacillus thiooxidans requiring organic growth factors. J Bacteriol. 1950 Oct;60(4):509–510. doi: 10.1128/jb.60.4.509-510.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Srivastava B. S. Ultra-violet induced mutations to growth factor requirement and penicillin resistance in a blue-green alga. Arch Mikrobiol. 1969;66(3):234–238. doi: 10.1007/BF00412055. [DOI] [PubMed] [Google Scholar]
  17. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stevens S. E., Jr, Van Baalen C. Growth characteristics of selected mutants of a coccoid blue-green alga. Arch Mikrobiol. 1970;72(1):1–8. doi: 10.1007/BF00411008. [DOI] [PubMed] [Google Scholar]
  19. Weber H. L., Böck A. Regulation of the chorismic acid branch-point in aromatic acid synthesis in blue-green and green algae. Arch Mikrobiol. 1969;66(3):250–258. doi: 10.1007/BF00412057. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES