Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Sep;111(3):717–722. doi: 10.1128/jb.111.3.717-722.1972

Mutants with Altered Glucose Repression of Amidase Enzymes in Aspergillus nidulans

M J Hynes 1
PMCID: PMC251344  PMID: 4559822

Abstract

Aspergillus nidulans produces acetamidase and formamidase enzymes. The acetamidase is produced in reduced amounts during growth on glucose, whereas the formamidase is not greatly affected. Mutations in a gene, amdT, which affect glucose repression of amidases are described. One of these, amdT102, causes the acetamidase to be no longer subject to glucose repression and also affects ability to synthesize formamidase. The other, amdT19, results in both the formamidase and the acetamidase being subject to abnormally strong glucose repression, and also in increased maximal acetamidase activities. The dominance relationships at the amdT locus have been investigated. It is suggested that the amdT gene may play a positive role in controlling amidase synthesis.

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz D. D-Mannitol utilization in Salmonella typhimurium. J Bacteriol. 1971 Jan;105(1):232–240. doi: 10.1128/jb.105.1.232-240.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hong J. S., Smith G. R., Ames B. N. Adenosine 3':5'-cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2258–2262. doi: 10.1073/pnas.68.9.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hynes M. J. Induction and repression of amidase enzymes in Aspergillus nidulans. J Bacteriol. 1970 Aug;103(2):482–487. doi: 10.1128/jb.103.2.482-487.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hynes M. J., Pateman J. A. The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. Mol Gen Genet. 1970;108(2):97–106. doi: 10.1007/BF02430516. [DOI] [PubMed] [Google Scholar]
  6. Hynes M. J., Pateman J. A. The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. II. Mutants resistant to fluoroacetamide. Mol Gen Genet. 1970;108(2):107–116. doi: 10.1007/BF02430517. [DOI] [PubMed] [Google Scholar]
  7. Hynes M. J., Pateman J. A. The use of amides as nitrogen sources by Aspergillus nidulans. J Gen Microbiol. 1970 Nov;63(3):317–324. doi: 10.1099/00221287-63-3-317. [DOI] [PubMed] [Google Scholar]
  8. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES