Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Sep;111(3):771–777. doi: 10.1128/jb.111.3.771-777.1972

Effect of Maltose on Glucoamylase Formation by Aspergillus niger

Larry L Barton a,1, Carl E Georgi a, David R Lineback a,2
PMCID: PMC251351  PMID: 5053881

Abstract

Low levels of glucoamylase are produced when Aspergillus niger is grown on sorbitol, but substitution of the latter by glucose, maltose, or starch results in greater formation of glucoamylase as measured by enzymatic activity. Both glucoamylase I and glucoamylase II are formed in a yeast extract medium; however, glucoamylase I appears to be the only form produced when ammonium chloride is the nitrogen source. Maltose or isomaltose (1.4 × 104m), but no other disaccharides or monosaccharides, dextrins, dextrans, or starches, stimulated glucoamylase formation when added to mycelia pregrown on sorbitol-ammonium salts. The induction of glucoamylase by maltose was independent of sulfate concentration but showed a dependency on low pH and the absence of utilizable carbon sources.

Full text

PDF
771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton R. R. A specific method for quantitative determination of glucose. Anal Biochem. 1966 Feb;14(2):258–260. doi: 10.1016/0003-2697(66)90134-5. [DOI] [PubMed] [Google Scholar]
  2. DAHLQVIST A. Determination of maltase and isomaltase activities with a glucose-oxidase reagent. Biochem J. 1961 Sep;80:547–551. doi: 10.1042/bj0800547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gratzner H., Sheehan D. N. Neurospora mutant exhibiting hyperproduction of amylase and invertase. J Bacteriol. 1969 Feb;97(2):544–549. doi: 10.1128/jb.97.2.544-549.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lineback D. R., Russell I. J., Rasmussen C. Two forms of the glucoamylase of Aspergillus niger. Arch Biochem Biophys. 1969 Nov;134(2):539–553. doi: 10.1016/0003-9861(69)90316-6. [DOI] [PubMed] [Google Scholar]
  5. METZENBERG R. L. A gene affecting the repression of invertase and trehalase in Neurospora. Arch Biochem Biophys. 1962 Mar;96:468–474. doi: 10.1016/0003-9861(62)90322-3. [DOI] [PubMed] [Google Scholar]
  6. Ohama H., Tomonaga G., Yanagita T. Proteinase formation in relation to physiological activities of growing mycelia of Aspergillus niger. J Biochem. 1966 Dec;60(6):713–717. doi: 10.1093/oxfordjournals.jbchem.a128498. [DOI] [PubMed] [Google Scholar]
  7. PAZUR J. H., ANDO T. The action of an amyloglucosidase of Aspergillus niger on starch and malto-oligosaccharides. J Biol Chem. 1959 Aug;234(8):1966–1970. [PubMed] [Google Scholar]
  8. PAZUR J. H., ANDO T. The hydrolysis of glucosyl oligosaccharides with alpha-D-(1-4) and alpha-D-(1-6) bonds by fungal amyloglucosidase. J Biol Chem. 1960 Feb;235:297–302. [PubMed] [Google Scholar]
  9. PAZUR J. H., ANDO T. The isolation and the mode of action of a fungal transglycosylase. Arch Biochem Biophys. 1961 Apr;93:43–49. doi: 10.1016/0003-9861(61)90313-7. [DOI] [PubMed] [Google Scholar]
  10. PAZUR J. H., KLEPPE K., BALL E. M. THE GLYCOPROTEIN NATURE OF SOME FUNGAL CARBOHYDRASES. Arch Biochem Biophys. 1963 Dec;103:515–516. doi: 10.1016/0003-9861(63)90445-4. [DOI] [PubMed] [Google Scholar]
  11. PAZUR J. H., KLEPPE K. The hydrolysis of alpha-D-glucosides by amyloglucosidase from Aspergillus niger. J Biol Chem. 1962 Apr;237:1002–1006. [PubMed] [Google Scholar]
  12. PAZUR J. H. The hydrolysis of amylotriose and amylotetraose by salivary amylase. J Biol Chem. 1953 Nov;205(1):75–80. [PubMed] [Google Scholar]
  13. Pazur J. H., Simpson D. L., Knull H. R. Biosynthesis of glucohydrolase I, a glycoenzyme from Aspergillus niger. Biochem Biophys Res Commun. 1969 Aug 7;36(3):394–400. doi: 10.1016/0006-291x(69)90577-4. [DOI] [PubMed] [Google Scholar]
  14. Reese E. T., Lola J. E., Parrish F. W. Modified substrates and modified products as inducers of carbohydrases. J Bacteriol. 1969 Dec;100(3):1151–1154. doi: 10.1128/jb.100.3.1151-1154.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smiley K. L., Hensley D. E., Smiley M. J., Gasdorf H. J. Kinetic patterns of glucoamylase isozymes isolated from Aspergillus species. Arch Biochem Biophys. 1971 Jun;144(2):694–699. doi: 10.1016/0003-9861(71)90376-6. [DOI] [PubMed] [Google Scholar]
  16. Somkuti G. A., Babel F. J. Acid protease synthesis by Mucor pusillus in chemically defined media. J Bacteriol. 1968 Apr;95(4):1415–1418. doi: 10.1128/jb.95.4.1415-1418.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WELKER N. E., CAMPBELL L. L. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Oct;86:681–686. doi: 10.1128/jb.86.4.681-686.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WELKER N. E., CAMPBELL L. L. INDUCTION OF ALPHA-AMYLASE OF BACILLUS STEAROTHERMOPHILUS BY MALTODEXTRINS. J Bacteriol. 1963 Oct;86:687–691. doi: 10.1128/jb.86.4.687-691.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES