Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Oct;112(1):445–452. doi: 10.1128/jb.112.1.445-452.1972

Reconstitution of Micrococcus lysodeikticus Reduced Nicotinamide Adenine Dinucleotide and l-Malate Dehydrogenases with Dehydrogenase-Depleted Membrane Residues: a Basis for Restoration of Oxidase Actitivies

Robert C Eisenberg 1
PMCID: PMC251431  PMID: 4342817

Abstract

Deoxycholate disruption of Micrococcus lysodeikticus protoplast membranes resulted in solubilization of both l-malate and reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase enzymes (substrate: 2,6-dichlorophenolindophenol oxidoreductases). Insoluble residues contained cytochromes of the b, c, and a type. Solubilized dehydrogenases were reconstituted with insoluble residues by treatment of disrupted membranes with magnesium ions. Most of the solubilized l-malate and NADH dehydrogenase activities were precipitated by magnesium ions independent of enzyme reconstitution with insoluble residues. Reconstituted dehydrogenases explained the mechanism for restoration of disrupted l-malate and NADH oxidase activities (4). Black light irradiation inhibited oxidase activities of both native and reconstituted membranes. These irradiated membrane oxidases were partially restored by exogenous napthoquinones [K2(20) and K2(50)] but not by CoQ(6). Reconstitution experiments showed that native membrane napthoquinone was retained in the insoluble residues of deoxycholate-disrupted membranes.

Full text

PDF
445

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams A., Baron C. Reversible attachment of adenosine triphosphatase to streptococcal membranes and the effect of magnesium ions. Biochemistry. 1968 Feb;7(2):501–507. doi: 10.1021/bi00842a003. [DOI] [PubMed] [Google Scholar]
  2. Broberg P., Welsch M., Smith L. Glucose dehydrogenase of Bacillus megaterium KM. Coupling of the cytoplasmic enzyme with membrane-bound cytochromes. Biochim Biophys Acta. 1969 Feb 25;172(2):205–215. doi: 10.1016/0005-2728(69)90064-4. [DOI] [PubMed] [Google Scholar]
  3. Eisenberg R. C. Restoration of deoxycholate-disrupted membrane oxidases of Micrococcus lysodeikticus. J Bacteriol. 1971 Dec;108(3):964–972. doi: 10.1128/jb.108.3.964-972.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg R. C., Yu L., Wolin M. J. Divalent cation activation of deoxycholate-solubilized and -inactivated membrane reduced nicotinamide adenine dinucleotide oxidase of Bacillus megaterium KM. J Bacteriol. 1970 Apr;102(1):172–177. doi: 10.1128/jb.102.1.172-177.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. IV. Structure and composition of membrane and aggregated components. Biochim Biophys Acta. 1968 Apr 29;150(3):385–396. doi: 10.1016/0005-2736(68)90137-5. [DOI] [PubMed] [Google Scholar]
  6. Fujita M., Ishikawa S., Shimazono N. Respiratory chain and phosphorylation site of the sonicated membrane fragments of Micrococcus lysodeikticus. J Biochem. 1966 Feb;59(2):104–114. doi: 10.1093/oxfordjournals.jbchem.a128269. [DOI] [PubMed] [Google Scholar]
  7. Gel'man N. S., Tikhonova G. V., Simakova I. M., Lukoyanova M. A., Taptykova S. D., Mikelsaar H. M. Fragmentation by detergents of the respiratory chain of Micrococcus lysodeikticus membranes. Biochim Biophys Acta. 1970 Dec 8;223(2):321–331. doi: 10.1016/0005-2728(70)90188-x. [DOI] [PubMed] [Google Scholar]
  8. JACKSON F. L., LAWTON V. D. A cytochrome of the b group from Micrococcus lysodeikticus. Biochim Biophys Acta. 1959 Sep;35:76–84. doi: 10.1016/0006-3002(59)90336-1. [DOI] [PubMed] [Google Scholar]
  9. KING T. E. RECONSTITUTION OF RESPIRATORY CHAIN ENZYME SYSTEMS. XII. SOME OBSERVATIONS ON THE RECONSTITUTION OF THE SUCCINATE OXIDASE SYSTEM FROM HEART MUSCLE. J Biol Chem. 1963 Dec;238:4037–4051. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Razin S., Morowitz H. J., Terry T. M. Membrane subunits of Mycoplasma laidlawii and their assembly to membranelike structures. Proc Natl Acad Sci U S A. 1965 Jul;54(1):219–225. doi: 10.1073/pnas.54.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Romeo D., Hinckley A., Rothfield L. Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme. J Mol Biol. 1970 Nov 14;53(3):491–501. doi: 10.1016/0022-2836(70)90079-3. [DOI] [PubMed] [Google Scholar]
  13. Salton M. R., Freer J. H., Ellar D. J. Electron transport components localized in a lipid-depleted sheet isolated from Micrococcus lysodeikticus membranes by deoxycholate extraction. Biochem Biophys Res Commun. 1968 Dec 30;33(6):909–915. doi: 10.1016/0006-291x(68)90398-7. [DOI] [PubMed] [Google Scholar]
  14. WEBER M. M., ROSSO G. ROLE OF AN UNIDENTIFIED FACTOR INVOLVED IN ELECTRON TRANSPORT IN MYCOBACTERIUM PHLEI. Proc Natl Acad Sci U S A. 1963 Oct;50:710–717. doi: 10.1073/pnas.50.4.710. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES