Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Oct;112(1):539–547. doi: 10.1128/jb.112.1.539-547.1972

Purification and Properties of the Flavine-Stimulated Anaerobic l-α-Glycerophosphate Dehydrogenase of Escherichia coli1

W S Kistler a,2, E C C Lin a
PMCID: PMC251442  PMID: 4562407

Abstract

The anaerobic l-α-glycerophosphate (l-α-GP) dehydrogenase of Escherichia coli was purified approximately 40-fold. The activity of the dehydrogenase, although not affected by the addition of pyridine nucleotides, was stimulated three- to fourfold by flavine adenine dinucleotide (Km about 10−7m) and up to 10-fold by flavine mononucleotide (Km about 10−4m). Maximal activity of the enzyme was found only in the combined presence of saturating concentrations of both flavines (stimulation by a factor of 10 to 15). The dependence of the rate of the reaction on the concentration of l-α-GP was complex in the presence of both flavines, but in the presence of flavine adenine dinucleotide alone the kinetics were of the Michaelis-Menten type with the Km for l-α-GP being about 10−4m. The product of the reaction was identified as dihydroxyacetone phosphate, and the molecular weight of the dehydrogenase was estimated to be 80,000 ± 10,000. Phenazine methosulfate, menadione and ferricyanide served as artificial acceptors for the dehydrogenase. The enzyme was sensitive to iodoacetate, p-chloromercuribenzoate, and N-ethymaleimide.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASANO A., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XIV. RESPIRATORY CHAINS OF MYCOBACTERIUM PHLEI. J Biol Chem. 1964 Dec;239:4280–4291. [PubMed] [Google Scholar]
  2. ASANO A., KANESHIRO T., BRODIE A. F. MALATE-VITAMIN K REDUCTASE, A PHOSPHOLIPID-REQUIRING ENZYME. J Biol Chem. 1965 Feb;240:895–905. [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper R. A., Anderson A. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Lett. 1970 Dec 11;11(4):273–276. doi: 10.1016/0014-5793(70)80546-4. [DOI] [PubMed] [Google Scholar]
  5. Cozzarelli N. R., Freedberg W. B., Lin E. C. Genetic control of L-alpha-glycerophosphate system in Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):371–387. doi: 10.1016/0022-2836(68)90415-4. [DOI] [PubMed] [Google Scholar]
  6. FRIEDMANN H. C., VENNESLAND B. Crystalline dihydroorotic dehydrogenase. J Biol Chem. 1960 May;235:1526–1532. [PubMed] [Google Scholar]
  7. HAGER L. P., GELLER D. M., LIPMANN F. Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii. Fed Proc. 1954 Sep;13(3):734–738. [PubMed] [Google Scholar]
  8. HIRSCH C. A., RASMINSKY M., DAVIS B. D., LIN E. C. A FUMARATE REDUCTASE IN ESCHERICHIA COLI DISTINCT FROM SUCCINATE DEHYDROGENASE. J Biol Chem. 1963 Nov;238:3770–3774. [PubMed] [Google Scholar]
  9. KASHKET E. R., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. VIII. ROLE OF PARTICULATE AND SOLUBLE FRACTIONS FROM ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Oct 8;78:52–65. doi: 10.1016/0006-3002(63)91608-1. [DOI] [PubMed] [Google Scholar]
  10. KOCH J. P., HAYASHI S., LIN E. C. THE CONTROL OF DISSIMILATION OF GLYCEROL AND L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3106–3108. [PubMed] [Google Scholar]
  11. Kistler W. S., Hirsch C. A., Cozzarelli N. R., Lin E. C. Second pyridine nucleotide-independent 1-alpha-glycerophosphate dehydrogenase in Escherichia coli K-12. J Bacteriol. 1969 Nov;100(2):1133–1135. doi: 10.1128/jb.100.2.1133-1135.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kistler W. S., Lin E. C. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol. 1971 Dec;108(3):1224–1234. doi: 10.1128/jb.108.3.1224-1234.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kito M., Pizer L. I. Purification and regulatory properties of the biosynthetic L-glycerol 3-phosphate dehydrogenase from Escherichia coli. J Biol Chem. 1969 Jun 25;244(12):3316–3323. [PubMed] [Google Scholar]
  14. Klotz I. M., Darnall D. W. Protein subunits: a table (second edition). Science. 1969 Oct 3;166(3901):126–128. doi: 10.1126/science.166.3901.126. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  17. Murphey W. H., Kitto G. B., Everse J., Kaplan N. Malate dehydrogenases. I. A survey of molecular size measured by gel filtration. Biochemistry. 1967 Feb;6(2):603–610. doi: 10.1021/bi00854a031. [DOI] [PubMed] [Google Scholar]
  18. NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
  19. Quastel J. H., Stephenson M. Further Observations on the Anaerobic Growth of Bacteria. Biochem J. 1925;19(4):660–666. doi: 10.1042/bj0190660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Quastel J. H., Stephenson M., Whetham M. D. Some Reactions of Resting Bacteria in Relation to Anaerobic Growth. Biochem J. 1925;19(2):304–317. doi: 10.1042/bj0190304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RAO N. A., FELTON S. P., HUENNEKENS F. M., MACKLER B. Flavin mononucleotide: the coenzyme of reduced diphosphopyridine nucleotide dehydrogenase. J Biol Chem. 1963 Jan;238:449–455. [PubMed] [Google Scholar]
  22. Rose I. A., O'Connell E. L. Inactivation and labeling of triose phosphate isomerase and enolase by glycidol phosphate. J Biol Chem. 1969 Dec 10;244(23):6548–6550. [PubMed] [Google Scholar]
  23. TUNG T. C., ANDERSON L., LARDY H. A. Studies on the particulate alpha-glycerophosphate dehydrogenase of muscle. Arch Biochem Biophys. 1952 Sep;40(1):194–204. doi: 10.1016/0003-9861(52)90087-8. [DOI] [PubMed] [Google Scholar]
  24. Tanaka S., Lerner S. A., Lin E. C. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol. 1967 Feb;93(2):642–648. doi: 10.1128/jb.93.2.642-648.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trudgill P. W., DuBus R., Gunsalus I. C. Mixed function oxidation. V. Flavin interaction with a reduced diphosphopyridine nucleotide dehydrogenase, one of the enzymes participating in camphor lactonization. J Biol Chem. 1966 Mar 10;241(5):1194–1205. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES