Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Nov;112(2):697–706. doi: 10.1128/jb.112.2.697-706.1972

Polyfunctional Penicillinase Plasmid in Staphylococcus epidermidis: Bacteriophage Restriction and Modification Mutants

S Schaefler 1
PMCID: PMC251477  PMID: 4263928

Abstract

Growth of multiply resistant Staphylococcus epidermidis BV strains at 45 C resulted in the independent elimination of tetracycline resistance, of kanamycin resistance coupled with oxacillin resistance, or of penicillinase activity. The pH optimum for the elimination of kanamycin and oxacillin resistance was 5.6, whereas that for elimination of penicillinase activity was 8.0. The genetic determinant for penicillinase activity was linked with the genetic determinants for the active uptake of mannitol and β-glucosides, ribose fermentation, and phospho β-glucosidase activity. The penicillinase linkage group also contained determinants for phage adsorption, restriction, and modification, and for growth factor requirements of still unknown nature. The same linkage group, which is apparently of extrachromosomal nature, was eliminated from several S. epidermidis BV strains. By selection for novobiocin resistance, deletion mutants affecting several loci of the penicillinase plasmid were isolated. The isolation of restriction-negative and modification-negative mutants which retained phage susceptibility allowed the investigation of restriction and modification phenomena. A preliminary deletion map of the polyfunctional penicillinase plasmid is proposed.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyer H. W. DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol. 1971;25:153–176. doi: 10.1146/annurev.mi.25.100171.001101. [DOI] [PubMed] [Google Scholar]
  2. Davis C. E., Anandan J. The evolution of r factor. A study of a "preantibiotic" community in Borneo. N Engl J Med. 1970 Jan 15;282(3):117–122. doi: 10.1056/NEJM197001152820302. [DOI] [PubMed] [Google Scholar]
  3. Dornbusch K. Genetic aspects of methicillin resistance and toxin production in a strain of Staphylococcus aureus. Ann N Y Acad Sci. 1971 Jun 11;182:91–97. doi: 10.1111/j.1749-6632.1971.tb30647.x. [DOI] [PubMed] [Google Scholar]
  4. Drabble W. T., Stocker B. A. R (transmissible drug-resistance) factors in Salmonella typhimurium: pattern of transduction by phage P22 and ultraviolet-protection effect. J Gen Microbiol. 1968 Aug;53(1):109–123. doi: 10.1099/00221287-53-1-109. [DOI] [PubMed] [Google Scholar]
  5. Ensign J. C., Wolfe R. S. Characterization of a small proteolytic enzyme which lyses bacterial cell walls. J Bacteriol. 1966 Feb;91(2):524–534. doi: 10.1128/jb.91.2.524-534.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KORMAN R. Z. COAGULASE-NEGATIVE MUTANTS OF STAPHYLOCOCCUS AUREUS: GENETIC STUDIES. J Bacteriol. 1963 Sep;86:363–369. doi: 10.1128/jb.86.3.363-369.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Meynell G. G., Lawn A. M. Filamentous phages specific for the I sex factor. Nature. 1968 Mar 23;217(5134):1184–1186. doi: 10.1038/2171184a0. [DOI] [PubMed] [Google Scholar]
  8. NOVICK R. P., RICHMOND M. H. NATURE AND INTERACTIONS OF THE GENETIC ELEMENTS GOVERNING PENICILLINASE SYNTHESIS IN STAPHYLOCOCCUS AUREUS. J Bacteriol. 1965 Aug;90:467–480. doi: 10.1128/jb.90.2.467-480.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Novick R. P. Extrachromosomal inheritance in bacteria. Bacteriol Rev. 1969 Jun;33(2):210–263. doi: 10.1128/br.33.2.210-263.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Novick R. P., Roth C. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol. 1968 Apr;95(4):1335–1342. doi: 10.1128/jb.95.4.1335-1342.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PERRET C. J. Iodometric assay of penicillinase. Nature. 1954 Nov 27;174(4439):1012–1013. doi: 10.1038/1741012a0. [DOI] [PubMed] [Google Scholar]
  12. Schaefler S., Malamy A., Green I. Phospho-beta-glucosidases and beta-glucoside permeases in Streptococcus, Bacillus, and Staphylococcus. J Bacteriol. 1969 Aug;99(2):434–440. doi: 10.1128/jb.99.2.434-440.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schaefler S., Schenkein I. Beta-glucoside permeases and phospho beta-glucosidases in Aerobacter aerogenes: relationship with cryptic phospho beta-glucosidases in Enterobacteriaceae. Proc Natl Acad Sci U S A. 1968 Jan;59(1):285–292. doi: 10.1073/pnas.59.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schaefler S. Staphylococcus epidermidis BV: antibiotic resistance patterns, physiological characteristics, and bacteriophage susceptibility. Appl Microbiol. 1971 Oct;22(4):693–699. doi: 10.1128/am.22.4.693-699.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Siccardi A. G. Colicin resistance associated with resistance factors in Escherichia coli. Genet Res. 1966 Oct;8(2):219–228. doi: 10.1017/s0016672300010077. [DOI] [PubMed] [Google Scholar]
  16. Smith D. H. R factors mediate resistance to mercury, nickel, and cobalt. Science. 1967 May 26;156(3778):1114–1116. doi: 10.1126/science.156.3778.1114. [DOI] [PubMed] [Google Scholar]
  17. Verhoef J., van Boven C. P., Holtrigter B. Restriction and modification of phages in coagulase-negative staphylococci. Antonie Van Leeuwenhoek. 1971;37(2):256–257. doi: 10.1007/BF02218490. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES