Abstract
Pyridoxineless mutants of Escherichia coli B stopped incorporation of nucleosides into trichloroacetic acid-insoluble material about 40 to 60 min after pyridoxine starvation was initiated, whereas incorporation of amino acids (measured the same way) slowed but did not stop for several hours. Both these incorporations and cell density were increased most effectively by the presence of either threonine or isoleucine. Arginine, glutamate, histidine, methionine, tryptophan, and tyrosine also caused significant but less dramatic increases. Inducibility of β-galactosidase continued beyond the point where nucleic acids appeared to stop their synthesis, suggesting that messenger ribonucleic acid synthesis continued beyond ribosomal ribonucleic acid synthesis. This inducibility was also increased by isoleucine and threonine. The overall results suggest that the threonine-isoleucine biosynthetic pathway is the most sensitive to starvation for pyridoxine.
Full text
PDF![726](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/3cce84fae297/jbacter00355-0080.png)
![727](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/e1084c36ee0e/jbacter00355-0081.png)
![728](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/287c0409b041/jbacter00355-0082.png)
![729](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/8c6e6fa40ead/jbacter00355-0083.png)
![730](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/21ee4329eb6e/jbacter00355-0084.png)
![731](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/22b11fe7cf80/jbacter00355-0085.png)
![732](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/eeabca8f559e/jbacter00355-0086.png)
![733](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/ac93f2f0f651/jbacter00355-0087.png)
![734](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/bb7c490c713a/jbacter00355-0088.png)
![735](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce27/251480/965699994a7d/jbacter00355-0089.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brunschede H., Bremer H. Protein synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):25–38. doi: 10.1016/0022-2836(69)90123-5. [DOI] [PubMed] [Google Scholar]
- Dempsey W. B. Characterization of pyridoxine auxotrophs of Escherichia coli: P1 transduction. J Bacteriol. 1969 Mar;97(3):1403–1410. doi: 10.1128/jb.97.3.1403-1410.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Characterization of pyridoxine auxotrophs of Escherichia coli: chromosomal position of linkage group I. J Bacteriol. 1969 Oct;100(1):295–300. doi: 10.1128/jb.100.1.295-300.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Control of vitamin B 6 biosynthesis in Escherichia coli. J Bacteriol. 1971 Oct;108(1):415–421. doi: 10.1128/jb.108.1.415-421.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Escherichia coli mutants tht require either pyridoxine or alanine. J Bacteriol. 1972 Sep;111(3):838–840. doi: 10.1128/jb.111.3.838-840.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B., Ito H. Characterization of pyridoxine auxotrophs of Escherichia coli: serine and pdxF mutants. J Bacteriol. 1970 Nov;104(2):658–667. doi: 10.1128/jb.104.2.658-667.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Role of vitamin B 6 biosynthetic rate in the study of vitamin B 6 synthesis in Escherichia coli. J Bacteriol. 1971 Dec;108(3):1001–1007. doi: 10.1128/jb.108.3.1001-1007.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edlin G., Stent G. S., Baker R. F., Yanofsky C. Synthesis of a specific messenger RNA during amino acid starvation of Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):257–268. doi: 10.1016/0022-2836(68)90266-0. [DOI] [PubMed] [Google Scholar]
- FLAVIN M., SLAUGHTER C. Purification and properties of threonine synthetase of Neurospora. J Biol Chem. 1960 Apr;235:1103–1108. [PubMed] [Google Scholar]
- Grimminger H., Lingens F. Alternate requirement for pyridoxine or isoleucine in mutants of Escherichia coli. FEBS Lett. 1969 Nov 12;5(3):225–226. doi: 10.1016/0014-5793(69)80338-8. [DOI] [PubMed] [Google Scholar]
- Guirard B. M., Ames B. N., Snell E. E. Salmonella typhimurium mutants with alternate requirements for vitamin B 6 or isoleucine. J Bacteriol. 1971 Oct;108(1):359–363. doi: 10.1128/jb.108.1.359-363.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatfield G. W., Burns R. O. Specific binding of leucyl transfer RNA to an immature form of L-threonine deaminase: its implications in repression. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1027–1035. doi: 10.1073/pnas.66.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson G. B., Snell E. E. Vitamin B 6 -responsive histidine deficiency in mutants of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2903–2907. doi: 10.1073/pnas.68.12.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julien J., Kersten H., Hess B. Action of thiamine on protein and nucleic acid metabolism. II. Ribosome function and properties. Hoppe Seylers Z Physiol Chem. 1969 Dec;350(12):1635–1646. doi: 10.1515/bchm2.1969.350.2.1635. [DOI] [PubMed] [Google Scholar]
- Kaempfer R. O., Magasanik B. Effect of infection with T-even phage on the inducible synthesis of beta-glactosidase in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):453–468. doi: 10.1016/0022-2836(67)90051-4. [DOI] [PubMed] [Google Scholar]
- Kersten H., Averkamp K. H., Braatz W., Greif P., Kersten W., Hess B. Action of thiamine on protein and nucleic acid metabolism. I. Synthesis of ribosomes and messenger RNA during recovery from thiamine starvation in Lactobacillus viridescens. Hoppe Seylers Z Physiol Chem. 1969 Dec;350(12):1619–1634. doi: 10.1515/bchm2.1969.350.2.1619. [DOI] [PubMed] [Google Scholar]
- Koch A. L., Deppe C. S. In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. J Mol Biol. 1971 Feb 14;55(3):549–562. doi: 10.1016/0022-2836(71)90336-6. [DOI] [PubMed] [Google Scholar]
- Lavallé R., De Hauwer G. Messenger RNA synthesis during amino acid starvation in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):269–288. doi: 10.1016/0022-2836(68)90267-2. [DOI] [PubMed] [Google Scholar]
- RUDMAN D., MEISTER A. Transamination in Escherichia coli. J Biol Chem. 1953 Feb;200(2):591–604. [PubMed] [Google Scholar]
- Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILSON A. C., PARDEE A. B. Regulation of flavin synthesis by Escherichia coli. J Gen Microbiol. 1962 Jun;28:283–303. doi: 10.1099/00221287-28-2-283. [DOI] [PubMed] [Google Scholar]
- WORMSER E. H., PARDEE A. B. Regulation of threonine biosynthesis in Escherichia coli. Arch Biochem Biophys. 1958 Dec;78(2):416–432. doi: 10.1016/0003-9861(58)90367-9. [DOI] [PubMed] [Google Scholar]