Abstract
The fatty acid content of Thiobacillus novellus was determined under various cultural conditions. Four fatty acids, C16:0, C18:0, C18:1, and a C19 cyclopropane acid (C19:cyc), generally accounted for 90 to 99% of the total acids. Phosphate concentration, temperature, culture agitation, and the presence of branch-chain precursors had no significant effect on cellular fatty acids. Autotrophically grown cells contained more saturated C16 and C18 acids than did heterotrophic ones, and the sum of the percentages of the C18:1 and the C19:cyc acids was consistently higher in the heterotrophs. When the inorganic medium was supplemented with biotin, autotrophic cells produced more C19:cyc and much less C18:1 than did autotrophs in unsupplemented medium. Heterotrophic cells grown with biotin also showed a marked reduction of the unsaturated acid and an increase in the cyclopropane acid, except when glutamatecitrate medium was employed, in which case the opposite effect was noted. Two different biotin-supplemented media yielded cells with 75 to 77% of the total fatty acids being the C19 cyclopropane acid, one of the highest reported values for this class of acid.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AHRENS E. H., Jr, INSULL W., Jr, HIRSCH J., STOFFEL W., PETERSON M. L., FARQUHAR J. W., MILLER T., THOMASSON H. J. The effect on human serum-lipids of a dietary fat, highly unsaturated, but poor in essential fatty acids. Lancet. 1959 Jan 17;1(7064):115–119. doi: 10.1016/s0140-6736(59)90002-9. [DOI] [PubMed] [Google Scholar]
- BISHOP D. G., STILL J. L. FATTY ACID METABOLISM IN SERRATIA MARCESCENS. IV. THE EFFECT OF TEMPERATURE ON FATTY ACID COMPOSITION. J Lipid Res. 1963 Jan;4:87–90. [PubMed] [Google Scholar]
- Bunn C. R., McNeill J. J., Elkan G. H. Effect of biotin on fatty acids and phospholipids of biotin-sensitive strains of Rhizobium japonicum. J Bacteriol. 1970 Apr;102(1):24–29. doi: 10.1128/jb.102.1.24-29.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CROOM J. A., MCNEILL J. J., TOVE S. B. BIOTIN DEFICIENCY AND THE FATTY ACIDS OF CERTAIN BIOTIN-REQUIRING BACTERIA. J Bacteriol. 1964 Aug;88:389–394. doi: 10.1128/jb.88.2.389-394.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GANGULY J. Studies on the mechanism of fatty acid synthesis. VII. Biosynthesis of fatty acids from malonyl CoA. Biochim Biophys Acta. 1960 May 6;40:110–118. doi: 10.1016/0006-3002(60)91320-2. [DOI] [PubMed] [Google Scholar]
- GAVIN J. J., UMBREIT W. W. EFFECT OF BIOTIN ON FATTY ACID DISTRIBUTION IN ESCHERICHIA COLI. J Bacteriol. 1965 Feb;89:437–443. doi: 10.1128/jb.89.2.437-443.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HORNING M. G., MARTIN D. B., KARMEN A., VAGELOS P. R. Fatty acid synthesis in adipose tissue. II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. J Biol Chem. 1961 Mar;236:669–672. [PubMed] [Google Scholar]
- KANEDA T. Biosynthesis of branched chain fatty acids. II. Microbial synthesis of branched long chain fatty acids from certain short chain fatty acid substrates. J Biol Chem. 1963 Apr;238:1229–1235. [PubMed] [Google Scholar]
- KANEDA T. Biosythesis of branched chain fatty acids. I. Isolation and identification of fatty acids from Bacillus subtilis (ATCC 7059). J Biol Chem. 1963 Apr;238:1222–1228. [PubMed] [Google Scholar]
- KATES M., SEHGAL S. N., GIBBONS N. E. The lipid composition of Micrococcus halodenitrificans as influenced by salt concentration. Can J Microbiol. 1961 Aug;7:427–435. doi: 10.1139/m61-052. [DOI] [PubMed] [Google Scholar]
- Kaneda T. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis. Can J Microbiol. 1966 Jun;12(3):501–514. doi: 10.1139/m66-073. [DOI] [PubMed] [Google Scholar]
- Knivett V. A., Cullen J. Some factors affecting cyclopropane acid formation in Escherichia coli. Biochem J. 1965 Sep;96(3):771–776. doi: 10.1042/bj0960771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn E. D. The fatty acids of Euglena gracilis. J Lipid Res. 1964 Jul;5(3):352–362. [PubMed] [Google Scholar]
- LENNARZ W. J. The role of isoleucine in the biosynthesis of branched-chain fatty acids by Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1961 Nov 1;6:112–116. doi: 10.1016/0006-291x(61)90395-3. [DOI] [PubMed] [Google Scholar]
- LUSHBOUGH C. H., SCHWEIGERT B. S. Water-soluble vitamins. II. Ascorbic acid, biotin, nicotinamide, vitamin B6. Annu Rev Biochem. 1958;27(3):313–338. doi: 10.1146/annurev.bi.27.070158.001525. [DOI] [PubMed] [Google Scholar]
- Levin R. A. Fatty acids of Thiobacillus thiooxidans. J Bacteriol. 1971 Dec;108(3):992–995. doi: 10.1128/jb.108.3.992-995.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols B. W. Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta. 1965 Oct 4;106(2):274–279. doi: 10.1016/0005-2760(65)90035-4. [DOI] [PubMed] [Google Scholar]
- O'leary W. M. THE FATTY ACIDS OF BACTERIA. Bacteriol Rev. 1962 Dec;26(4):421–447. doi: 10.1128/br.26.4.421-447.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RADIN N. S., HAJRA A. K., AKAHORI Y. Preparation of methyl esters. J Lipid Res. 1960 Apr;1:250–251. [PubMed] [Google Scholar]
- ROSENBERG A., PECKER M. LIPID ALTERATIONS IN EUGLENA GRACILIS CELLS DURING LIGHT-INDUCED GREENING. Biochemistry. 1964 Feb;3:254–258. doi: 10.1021/bi00890a019. [DOI] [PubMed] [Google Scholar]
- ROSENBERG A., PECKER M., MOSCHIDES E. FATTY ACIDS IN THE PELLICLES AND PLASTIDS OF LIGHT-GROWN AND DARK-GROWN CELLS OF EUGLENA GRACILIS. Biochemistry. 1965 Apr;4:680–685. doi: 10.1021/bi00880a010. [DOI] [PubMed] [Google Scholar]
- Rosenberg A., Gouaux J., Milch P. Monogalactosyl and digalactosyl diglycerides from heterotrophic, hetero-autotrophic, and photobiotic Euglena gracilis. J Lipid Res. 1966 Nov;7(6):733–738. [PubMed] [Google Scholar]
- Ryder E., Gregolin C., Chang H. C., Lane M. D. Liver acetyl CoA carboxylase: insight into the mechanism of activation by tricarboxylic acids and acetyl CoA. Proc Natl Acad Sci U S A. 1967 May;57(5):1455–1462. doi: 10.1073/pnas.57.5.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANTER M., BOYER J., SANTER U. Thiobacillus novellus. I. Growth on organic and inorganic media. J Bacteriol. 1959 Aug;78:197–202. doi: 10.1128/jb.78.2.197-202.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw M. K., Ingraham J. L. Fatty Acid Composition of Escherichia coli as a Possible Controlling Factor of the Minimal Growth Temperature. J Bacteriol. 1965 Jul;90(1):141–146. doi: 10.1128/jb.90.1.141-146.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waite M., Wakil S. J. Studies on the mechanism of action of acetyl coenzyme A carboxylase. 3. Enzyme-bound 1'-N-carboxybiotin as the carboxylation intermediate. J Biol Chem. 1966 Apr 25;241(8):1909–1914. [PubMed] [Google Scholar]
- Wood B. J., Nichols B. W., James A. T. The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta. 1965 Oct 4;106(2):261–273. doi: 10.1016/0005-2760(65)90034-2. [DOI] [PubMed] [Google Scholar]
