Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1972 Dec;112(3):1099–1105. doi: 10.1128/jb.112.3.1099-1105.1972

Effect of Oxygen on Several Enzymes Involved in the Aerobic and Anaerobic Utilization of Glucose in Escherichia coli

Annette D Thomas 1, H W Doelle 1, A W Westwood 1, G L Gordon 1
PMCID: PMC251536  PMID: 4344916

Abstract

By using the continuous culture technique, the transition from aerobiosis to anaerobiosis and its effect on a number of enzymes has been investigated in Escherichia coli K-12. A decrease in the oxygen partial pressure below 28.0 mm of Hg resulted firstly in an increase of the respiratory enzymes (reduced nicotinamide adenine dinucleotide [NADH] oxidase, 2.53-fold; succinic dehydrogenase, 1.4-fold; cytochrome b1, 3.91-fold; and cytochrome a2, 2.45-fold) before the electron transport system gradually collapsed as cytochrome a2, followed by cytochrome b1, succinic dehydrogenase, and finally NADH oxidase decreased in activity. The change from respiration to fermentation was initiated well before the oxygen tension reached zero by the increase in levels of fructose diphosphate-aldolase, glucose 6-phosphate, and 6-phosphogluconate dehydrogenases and a decrease in 2-oxoglutarate dehydrogenase. Whem the dissolved oxygen tension reached zero, dry weight and CO2 formation together with isocitrate dehydrogenase decreased, whereas acid production and phosphofructokinase synthesis started to increase. Enzymatic investigations revealed that the kinetics of the enzyme phosphofructokinase from strict aerobic cultures (6.9 ppm oxygen in solution) was adenosine triphosphate (ATP)-insensitive, whereas the same enzyme from anaerobic cultures was ATP-sensitive. A mechanism is proposed for the change from aerobiosis to anaerobiosis together with the occurring change in glucose regulation.

Full text

PDF
1099

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARRIGONI O., SINGER T. P. Limitations of the phenazine methosulphate assay for succinic and related dehydrogenases. Nature. 1962 Mar 31;193:1256–1258. doi: 10.1038/1931256a0. [DOI] [PubMed] [Google Scholar]
  2. Amarasingham C. R., Davis B. D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem. 1965 Sep;240(9):3664–3668. [PubMed] [Google Scholar]
  3. Brown A. T., Wittenberger C. L. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. J Bacteriol. 1971 May;106(2):456–467. doi: 10.1128/jb.106.2.456-467.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doelle H. W., Manderson G. J. Comparative studies of fructose 1,6-diphosphate aldolase from Escherichia coli 518 and Lactobacillus casei var. rhamnosus ATCC 7469. Antonie Van Leeuwenhoek. 1971;37(1):21–31. doi: 10.1007/BF02218464. [DOI] [PubMed] [Google Scholar]
  5. ECKER R. E., LOCKHART W. R. Specific effect of limiting nutrient on physiological events during culture growth. J Bacteriol. 1961 Oct;82:511–516. doi: 10.1128/jb.82.4.511-516.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fraenkel D. G., Horecker B. L. Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol. 1965 Oct;90(4):837–842. doi: 10.1128/jb.90.4.837-842.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbs S. P., Sistrom W. R., Worden P. B. The photosynthetic apparatus of Rhodospirillum molischianum. J Cell Biol. 1965 Aug;26(2):395–412. doi: 10.1083/jcb.26.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
  9. KATZ J., WOOD H. G. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1960 Aug;235:2165–2177. [PubMed] [Google Scholar]
  10. KELLENBERGER E., RYTER A. Cell wall and cytoplasmic membrane of Escherichia coli. J Biophys Biochem Cytol. 1958 May 25;4(3):323–326. doi: 10.1083/jcb.4.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MOSS F. Adaptation of the cytochromes of Aerobacter aerogenes in response to environmental oxygen tension. Aust J Exp Biol Med Sci. 1956 Oct;34(5):395–405. doi: 10.1038/icb.1956.48. [DOI] [PubMed] [Google Scholar]
  13. MOSS F. The influence of oxygen tension on respiration and cytochrome a2 formation of Escherichia coli. Aust J Exp Biol Med Sci. 1952 Dec;30(6):531–540. doi: 10.1038/icb.1952.51. [DOI] [PubMed] [Google Scholar]
  14. Pontefract R. D., Bergeron G., Thatcher F. S. Mesosomes in Escherichia coli. J Bacteriol. 1969 Jan;97(1):367–375. doi: 10.1128/jb.97.1.367-375.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reichelt J. L., Doelle H. W. The influence of dissolved oxygen concentration on phosphofructokinase and the glucose metabolism of Escherichia coli K-12. Antonie Van Leeuwenhoek. 1971;37(4):497–506. doi: 10.1007/BF02218520. [DOI] [PubMed] [Google Scholar]
  16. Sanwal B. D. Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. 3. Control of glucose 6-phosphate dehydrogenase. J Biol Chem. 1970 Apr 10;245(7):1626–1631. [PubMed] [Google Scholar]
  17. Sly L. I., Doelle H. W. 6-phosphogluconate dehydrogenase in cell free extracts of Escherichia coli K-12. Arch Mikrobiol. 1968;63(3):214–223. doi: 10.1007/BF00412837. [DOI] [PubMed] [Google Scholar]
  18. Sly L. I., Doelle H. W. Glucose-6-phosphate dehydrogenase in cell free extracts of Zymomonas mobilis. Arch Mikrobiol. 1968;63(3):197–213. doi: 10.1007/BF00412836. [DOI] [PubMed] [Google Scholar]
  19. Stadtman E. R. Allosteric regulation of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1966;28:41–154. doi: 10.1002/9780470122730.ch2. [DOI] [PubMed] [Google Scholar]
  20. Wimpenny J. W., Necklen D. K. The redox environment and microbial physiology. I. The transition from anaerobiosis to aerobiosis in continuous cultures of facultative anaerobes. Biochim Biophys Acta. 1971 Dec 7;253(2):352–359. doi: 10.1016/0005-2728(71)90039-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES