Abstract
Carbon monoxide formation from heme compounds by bacteria was investigated to study microbial hemoprotein catabolism with reference to heme degradation by mammalian tissues. Hemolytic and nonhemolytic bacteria were incubated aerobically and anaerobically with the following substrates: erythrocytes, hemoglobin, myoglobin, cytochrome c, hematin, iron hematoporphyrin, copper hematoporphyrin, protoporphyrin, and bilirubin. After 18 hr at 37 C the evolved CO was measured by gas chromatography. None of the bacteria formed CO anaerobically. Under aerobic conditions both alpha-hemolytic Streptococcus mitis and hemolytic Bacillus cereus formed CO from all of the heme compounds tested, whereas nonhemolytic Streptococcus mitis did not evolve CO from any of the substrates. The hemolytic bacteria did not produce CO when the iron of heme was either replaced by copper or removed, as in copper hematoporphyrin and in protoporphyrin, respectively.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BESWICK T. S. Some observations on the changes produced in blood-agar by beta-haemolytic streptococci. J Pathol Bacteriol. 1953 Apr;65(2):607–611. doi: 10.1002/path.1700650231. [DOI] [PubMed] [Google Scholar]
- Coburn R. F., Williams W. J., White P., Kahn S. B. The production of carbon monoxide from hemoglobin in vivo. J Clin Invest. 1967 Mar;46(3):346–356. doi: 10.1172/JCI105536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly J. S., Little J. M., Troxler R. F., Lester R. Metabolism of 3H-myoglobin. Nature. 1967 Dec 9;216(5119):1030–1031. doi: 10.1038/2161030a0. [DOI] [PubMed] [Google Scholar]
- Douglas C. G., Haldane J. S., Haldane J. B. The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol. 1912 Jun 12;44(4):275–304. doi: 10.1113/jphysiol.1912.sp001517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drabkin D. L. The hemophagous organ of the placenta and in vitro studies of endogenous carbon monoxide production. Ann N Y Acad Sci. 1970 Oct 5;174(1):49–63. doi: 10.1111/j.1749-6632.1970.tb49771.x. [DOI] [PubMed] [Google Scholar]
- KRAUS F. W., NICKERSON J. F., PERRY W. I., WALKER A. P. Peroxide and peroxidogenic bacteria in human saliva. J Bacteriol. 1957 Jun;73(6):727–735. doi: 10.1128/jb.73.6.727-735.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landaw S. A., Callahan E. W., Jr, Schmid R. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J Clin Invest. 1970 May;49(5):914–925. doi: 10.1172/JCI106311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLeod J. W., Gordon J. Production of Hydrogen Peroxide by Bacteria. Biochem J. 1922;16(4):499–506. doi: 10.1042/bj0160499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSTROW J. D., JANDL J. H., SCHMID R. The formation of bilirubin from hemoglobin in vivo. J Clin Invest. 1962 Aug;41:1628–1637. doi: 10.1172/JCI104620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pimstone N. R., Tenhunen R., Seitz P. T., Marver H. S., Schmid R. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J Exp Med. 1971 Jun 1;133(6):1264–1281. doi: 10.1084/jem.133.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- QUIE P. G., WANNAMAKER L. W. Staphylococcal Muller phenomenon: relationship to the plasminogen-plasmin system. J Bacteriol. 1961 Nov;82:770–783. doi: 10.1128/jb.82.5.770-783.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodkey F. L. Carbon monoxide estimation in gases and blood by gas chromoatography. Ann N Y Acad Sci. 1970 Oct 5;174(1):261–267. doi: 10.1111/j.1749-6632.1970.tb49794.x. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND T. Formation of carbon monoxide by coupled oxidation of myoglobin with ascorbic acid. Acta Physiol Scand. 1952;26(4):334–337. doi: 10.1111/j.1748-1716.1952.tb00914.x. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND T. The formation of carbon monoxide by in vitro decomposition of haemoglobin in bile pigments. Acta Physiol Scand. 1952;26(4):328–333. doi: 10.1111/j.1748-1716.1952.tb00913.x. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND T. The in vitro formation of carbon monoxide in blood. Acta Physiol Scand. 1952 Feb 12;24(4):314–332. doi: 10.1111/j.1748-1716.1952.tb00848.x. [DOI] [PubMed] [Google Scholar]
- SNYDER A. L., SCHMID R. THE CONVERSION OF HEMATIN TO BILE PIGMENT IN THE RAT. J Lab Clin Med. 1965 May;65:817–824. [PubMed] [Google Scholar]
- Sjöstrand T. Early studies of CO production. Ann N Y Acad Sci. 1970 Oct 5;174(1):5–10. doi: 10.1111/j.1749-6632.1970.tb49767.x. [DOI] [PubMed] [Google Scholar]
- Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]
- Tenhunen R., Marver H. S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):748–755. doi: 10.1073/pnas.61.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Brown A., Lester R., White P. Bile pigment formation in plants. Science. 1970 Jan 9;167(3915):192–193. doi: 10.1126/science.167.3915.192. [DOI] [PubMed] [Google Scholar]
- White P. Carbon monoxide production and heme catabolism. Ann N Y Acad Sci. 1970 Oct 5;174(1):23–31. doi: 10.1111/j.1749-6632.1970.tb49769.x. [DOI] [PubMed] [Google Scholar]
- White P., Coburn R. F., Williams W. J., Goldwein M. I., Rother M. L., Shafer B. C. Carbon monoxide production associated with ineffective erythropoiesis. J Clin Invest. 1967 Dec;46(12):1986–1998. doi: 10.1172/JCI105688. [DOI] [PMC free article] [PubMed] [Google Scholar]