Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jan;113(1):178–182. doi: 10.1128/jb.113.1.178-182.1973

Temperature-Sensitive Relaxed Phenotype in a Stringent Strain of Escherichia coli1

Alan G Atherly a
PMCID: PMC251615  PMID: 4569401

Abstract

A temperature-sensitive elongation factor G (EF-G) mutation carried by a rel strain of Escherichia coli was transferred to a rel+ strain. The recombinant (AA-10) was found to be temperature-sensitive “relaxed” for ribonucleic acid (RNA) regulation. However, when a temperature-sensitive EF-G is present in a strain temperature-sensitive for valyl-transfer RNA (tRNA) synthetase, this new strain (AA-16) is no longer temperature-sensitive “relaxed” for RNA regulation. In strain AA-10, all tRNAs remain fully charged, and in AA-16 tRNAval becomes completely discharged at the nonpermissive growth temperature. Also, synthesis of ppGpp is not observed in strain AA-10 at 42 C but is observed at 42 C in strain AA-16.

Full text

PDF
178

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherly A. G., Suchanek M. C. Characterization of mutants of Escherichia coli temperature-sensitive for ribonucleic acid regulation: an unusual phenotype associated with a phenylalanyl transfer ribonucleic acid synthetase mutant. J Bacteriol. 1971 Nov;108(2):627–638. doi: 10.1128/jb.108.2.627-638.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
  3. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ezekiel D. H., Elkins B. N. The stimulation of ribonucleic acid synthesis by ribosome inhibitors in amino acid-starved Escherichia coli. Biochim Biophys Acta. 1968 Sep 24;166(2):466–474. doi: 10.1016/0005-2787(68)90234-7. [DOI] [PubMed] [Google Scholar]
  5. Kang S. S. A mutant of Escherichia coli with temperature-sensitive streptomycin protein. Proc Natl Acad Sci U S A. 1970 Mar;65(3):544–550. doi: 10.1073/pnas.65.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaplan S., Anderson D. Selection of temperature-sensitive activating enzyme mutants in Escherichia coli. J Bacteriol. 1968 Mar;95(3):991–997. doi: 10.1128/jb.95.3.991-997.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuwano M., Schlessinger D. G factor mutants of Escherichia coli: map location and properties. Biochem Biophys Res Commun. 1971 Feb 5;42(3):441–444. doi: 10.1016/0006-291x(71)90390-1. [DOI] [PubMed] [Google Scholar]
  8. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  9. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tanaka N., Kawano G., Kinoshita T. Chromosomal location of a fusidic acid resistant marker in Escherichia coli. Biochem Biophys Res Commun. 1971 Feb 5;42(3):564–567. doi: 10.1016/0006-291x(71)90408-6. [DOI] [PubMed] [Google Scholar]
  11. Tocchini-Valentini G. P., Mattoccia E. A mutant of E. coli with an altered supernatant factor. Proc Natl Acad Sci U S A. 1968 Sep;61(1):146–151. doi: 10.1073/pnas.61.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES