Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jan;113(1):212–217. doi: 10.1128/jb.113.1.212-217.1973

Distribution of a Phosphoenolpyruvate-Dependent Sugar Phosphotransferase System in Mycoplasmas

Vincent P Cirillo a,1, Shmuel Razin a
PMCID: PMC251620  PMID: 4688137

Abstract

A survey of 10 mycoplasma strains has shown that their capacity to accumulate radioactivity from α-methyl-d-glucopyranoside depends on the activity of a phosphoenolpyruvate-dependent phosphotransferase system (PTS), and that this system endows the organisms with a high affinity for glucose as a fermentation substrate. PTS activity was found in Mycoplasma gallisepticum, M. mycoides var. mycoides, and M. mycoides var. capri, but in none of the fermentative Acholeplasma strains nor in some of the nonfermentative Mycoplasma species. Partial characterization of the PTS of M. mycoides var. capri has shown that, like the PTS of Escherichia coli and Staphylococcus aureus, it is strictly dependent on phosphoenolpyruvate as a phosphoryl donor and on componenets of both the cytoplasm and the membrane.

Full text

PDF
212

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B., Weigel N., Kundig W., Roseman S. Sugar transport. 3. Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. J Biol Chem. 1971 Nov 25;246(22):7023–7033. [PubMed] [Google Scholar]
  2. Argaman M., Razin S. Antigenic properties of mycoplasma organisms and membranes. J Gen Microbiol. 1969 Jan;55(1):45–58. doi: 10.1099/00221287-55-1-45. [DOI] [PubMed] [Google Scholar]
  3. Hayflick L. Tissue cultures and mycoplasmas. Tex Rep Biol Med. 1965 Jun;23(Suppl):285+–285+. [PubMed] [Google Scholar]
  4. Kahane I., Razin S. Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. Biochim Biophys Acta. 1969 Jun 3;183(1):79–89. doi: 10.1016/0005-2736(69)90131-x. [DOI] [PubMed] [Google Scholar]
  5. Korte T., Hengstenberg W. Purification and characterization of the inducible lactose-specific membrane-bound component of the staphylococcal phosphenolpyruvate-dependent phosphotransferase system. Eur J Biochem. 1971 Nov 11;23(2):295–302. doi: 10.1111/j.1432-1033.1971.tb01621.x. [DOI] [PubMed] [Google Scholar]
  6. Kundig W., Roseman S. Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli. J Biol Chem. 1971 Mar 10;246(5):1393–1406. [PubMed] [Google Scholar]
  7. Kundig W., Roseman S. Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem. 1971 Mar 10;246(5):1407–1418. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. RAZIN S. OSMOTIC LYSIS OF MYCOPLASMA. J Gen Microbiol. 1963 Dec;33:471–475. doi: 10.1099/00221287-33-3-471. [DOI] [PubMed] [Google Scholar]
  10. Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rottem S., Razin S. Sugar transport in Mycoplasma gallisepticum. J Bacteriol. 1969 Feb;97(2):787–792. doi: 10.1128/jb.97.2.787-792.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saier M. H., Jr, Feucht B. U., Roseman S. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem. 1971 Dec 25;246(24):7819–7821. [PubMed] [Google Scholar]
  13. Van Demark P. J., Plackett P. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y. J Bacteriol. 1972 Aug;111(2):454–458. doi: 10.1128/jb.111.2.454-458.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES