Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1104–1111. doi: 10.1128/jb.113.3.1104-1111.1973

Genetic Recombination in Mycobacteria

Tohru Tokunaga 1, Yasuo Mizuguchi 1, Kiyoko Suga 1
PMCID: PMC251670  PMID: 4691386

Abstract

Evidence for genetic recombination between Mycobacterium smegmatis strain Rabinowitchi (Rab) and strain Jucho or PM5 is presented. Backcrosses of recombinants by either parental strain indicated four different types of mating behavior, suggesting that the mycobacterial compatibilities are controlled by at least two different factors. No sex factor that transfers at a high frequency or that is sensitive to acridine dyes was detected. Analysis of segregation of unselected markers revealed that strain Jucho, or PM5, contributes the majority of alleles in almost all recombinants obtained from different selective media. Efforts to construct linkage maps for the markers employed failed because of ordering ambiguities. Mating medium containing streptomycin prevented genetic recombination when strain Rab was resistant to the antibiotic and Jucho, or PM5, was sensitive, but it did not prevent recombination when Rab was sensitive to streptomycin and Jucho, or PM5, was resistant. Very low frequency of recombinant formation was observed when Jucho, or PM5, had been treated with streptomycin, whereas recombinants were formed at fairly high frequencies when Rab had been treated with the antibiotic, suggesting that the roles of parental strains in zygote formation were not identical. The results suggest a polar transfer of genetic material from Rab to Jucho, or PM5, although an alternative possibility of cell fusion followed by exclusion could not be excluded.

Full text

PDF
1104

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS J. N. RECOMBINATION BETWEEN NOCARDIA ERYTHROPOLIS AND NOCARDIA CANICRURIA. J Bacteriol. 1964 Oct;88:865–876. doi: 10.1128/jb.88.4.865-876.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams J. N., Bradley S. G. Recombination Events in the Bacterial Genus Nocardia. Science. 1963 Jun 28;140(3574):1392–1394. doi: 10.1126/science.140.3574.1392. [DOI] [PubMed] [Google Scholar]
  3. Adams J. N. Partial exclusion of the Nocardia erythropolis chromosome in nocardial recombinants. J Bacteriol. 1968 Nov;96(5):1750–1759. doi: 10.1128/jb.96.5.1750-1759.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownell G. H., Adams J. N. Linkage and segregation of a mating type specific phage and resistance characters in nocardial recombinants. Genetics. 1968 Nov;60(3):437–448. doi: 10.1093/genetics/60.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brownell G. H., Adams J. N. Linkage and segregation of unselected markers in matings of Nocardia erythropolis with Nocardia canicruria. J Bacteriol. 1967 Sep;94(3):650–659. doi: 10.1128/jb.94.3.650-659.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brownell G. H., Kelly K. L. Inheritance of mating factors in nocardial recombinants. J Bacteriol. 1969 Jul;99(1):25–36. doi: 10.1128/jb.99.1.25-36.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brownell G. H., Walsh R. S., 3rd Heterogenomic recombinants from compatible nocardiae. J Bacteriol. 1970 Oct;104(1):79–86. doi: 10.1128/jb.104.1.79-86.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brownell G. H., Walsh R. S. Colony mutants of compatible nocardiae displaying variations in recombining capacity. Genetics. 1972 Mar;70(3):341–351. doi: 10.1093/genetics/70.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark J. E., Brownell G. H. Genophore homologies among compatible nocardiae. J Bacteriol. 1972 Feb;109(2):720–729. doi: 10.1128/jb.109.2.720-729.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HAYES W. Recombination in Bact. coli K 12; unidirectional transfer of genetic material. Nature. 1952 Jan 19;169(4290):118–119. doi: 10.1038/169118b0. [DOI] [PubMed] [Google Scholar]
  11. HOLLOWAY B. W. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955 Dec;13(3):572–581. doi: 10.1099/00221287-13-3-572. [DOI] [PubMed] [Google Scholar]
  12. Holloway B. W. Genetics of Pseudomonas. Bacteriol Rev. 1969 Sep;33(3):419–443. doi: 10.1128/br.33.3.419-443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KARLSSON J. L. Induced metabolic mutants of Mycobacterium tuberculosis. J Bacteriol. 1954 Nov;68(5):592–593. doi: 10.1128/jb.68.5.592-593.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mizuguchi Y. Segregation of unselected markers in mycobacterial recombinants. Jpn J Microbiol. 1972 Mar;16(2):77–81. doi: 10.1111/j.1348-0421.1972.tb00632.x. [DOI] [PubMed] [Google Scholar]
  15. Mizuguchi Y., Tokunaga T. Method for isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol. 1970 Nov;104(2):1020–1021. doi: 10.1128/jb.104.2.1020-1021.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mizuguchi Y., Tokunaga T. Recombination between Mycobacterium smegmatis strains Jucho and Lacticola. Jpn J Microbiol. 1971 Jul;15(4):359–366. doi: 10.1111/j.1348-0421.1971.tb00592.x. [DOI] [PubMed] [Google Scholar]
  17. Tokunaga T., Maruyama Y., Murohashi T. [Further studies on the phage typing of rapidly growing Mycobacteria]. Nihon Saikingaku Zasshi. 1965 Sep;20(9):554–559. doi: 10.3412/jsb.20.554. [DOI] [PubMed] [Google Scholar]
  18. WOLLMAN E. L. Sur le determinisme génetique de la lysogénie. Ann Inst Pasteur (Paris) 1953 Jan;84(1):281–293. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES