Abstract
(i) Saccharomyces cerevisiae grown in the presence of 1.0 mM l-tryptophan slowly excreted fluorescent material that was chromatographically identifiable as 3-hydroxyanthranilate but did not excrete detectable amounts of anthranilate nor rapidly deplete the medium of l-tryptophan. Under similar growth conditions, Neurospora crassa rapidly excretes anthranilate and rapidly depletes the medium of l-tryptophan. (ii) Chromatographic analysis of crude extracts from yeast revealed a single kynureninase-type enzyme whose synthesis was not measurably affected by the presence of tryptophan in the medium. Previous studies have provided evidence for two kynureninase-type enzymes in N. crassa, an inducible kynureninase and a constitutive hydroxykynureninase. (iii) Kinetic analysis of the partially purified yeast enzyme provided Michaelis constants for l-3-hydroxykynurenine and l-kynurenine of 6.7 × 10−6 and 5.4 × 10−4 M, respectively. This and other kinetic properties of the yeast enzyme are comparable to those reported for the constitutive enzyme from N. crassa. (iv) These findings suggest that S. cerevisiae has in common with N. crassa the biosynthetic enzyme hydroxykynureninase but lacks the catabolic enzyme kynureninase. Therefore, it can be predicted that, unlike N. crassa, S. cerevisiae does not carry out the tryptophan-anthranilate cycle. Distinct kynureninase-type enzymes may exist in other microorganisms and in mammals.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad F., Moat A. G. Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae. J Biol Chem. 1966 Feb 25;241(4):775–780. [PubMed] [Google Scholar]
- Brown A. T., Wagner C. Regulation of enzymes involved in the conversion of tryptophan to nicotinamide adenine dinucleotide in a colorless strain of Xanthomonas pruni. J Bacteriol. 1970 Feb;101(2):456–463. doi: 10.1128/jb.101.2.456-463.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertner F. H., Cole K. W., Welch G. R. Evidence for distinct kynureninase and hydroxykynureninase activities in Neurospora crassa. J Bacteriol. 1971 Nov;108(2):902–909. doi: 10.1128/jb.108.2.902-909.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAYAISHI O., STANIER R. Y. The kynureninase of Pseudomonas fluorescens. J Biol Chem. 1952 Apr;195(2):735–740. [PubMed] [Google Scholar]
- JAKOBY W. B., BONNER D. M. Kynureninase from Neurospora: purification and properties. J Biol Chem. 1953 Dec;205(2):699–707. [PubMed] [Google Scholar]
- Komrower G. M., Westall R. Hydroxykynureninuria. Am J Dis Child. 1967 Jan;113(1):77–80. doi: 10.1001/archpedi.1967.02090160127016. [DOI] [PubMed] [Google Scholar]
- Lester G. End-product regulation of the tryptophan-nicotinic acid pathway in Neurospora crassa. J Bacteriol. 1971 Aug;107(2):448–455. doi: 10.1128/jb.107.2.448-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATCHETT W. H., DEMOSS J. A. Direct evidence for a trytophan-anthranilic acid cycle in Neurospora. Biochim Biophys Acta. 1963 Jun 4;71:632–642. doi: 10.1016/0006-3002(63)91136-3. [DOI] [PubMed] [Google Scholar]
- Turner J. R., Drucker H. Kynureninase from Neurospora: occurrence of two activities. Biochem Biophys Res Commun. 1971 Feb 19;42(4):698–704. doi: 10.1016/0006-291x(71)90544-4. [DOI] [PubMed] [Google Scholar]
- Turner J. R., Sorsoli W. A., Matchett W. H. Induction of kynureninase in Neurospora. J Bacteriol. 1970 Aug;103(2):364–369. doi: 10.1128/jb.103.2.364-369.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YANOFSKY C. The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis. J Bacteriol. 1954 Nov;68(5):577–584. doi: 10.1128/jb.68.5.577-584.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
