Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1161–1169. doi: 10.1128/jb.113.3.1161-1169.1973

Relation Between Survival and Deoxyribonucleic Acid Replication in Ultraviolet-Irradiated Resistant and Sensitive Strains of Escherichia coli B/r

J M Rudé 1, C O Doudney 1
PMCID: PMC251677  PMID: 4570772

Abstract

When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr and Rec strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.

Full text

PDF
1161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achey P., Billen D. Saturation of dark repair synthesis: accumulation of strand breaks. Biophys J. 1969 May;9(5):647–653. doi: 10.1016/S0006-3495(69)86409-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alper T., Forage A. J., Hodgkins B. Protection of normal, lysogenic, and pyocinogenic strains against ultraviolet radiation by bound acriflavine. J Bacteriol. 1972 Jun;110(3):823–830. doi: 10.1128/jb.110.3.823-830.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alper T., Hodgkins B. "Excision repair" and dose-modification: questions raised by radiobiological experiments with acriflavine. Mutat Res. 1969 Jul-Aug;8(1):15–23. doi: 10.1016/0027-5107(69)90136-5. [DOI] [PubMed] [Google Scholar]
  4. BILLEN D. Alterations in the radiosensitivity of Escherichia coli through modification of cellular macromolecular components. Biochim Biophys Acta. 1959 Jul;34:110–116. doi: 10.1016/0006-3002(59)90238-0. [DOI] [PubMed] [Google Scholar]
  5. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  6. BOYCE R. P., HOWARD-FLANDERS P. RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Feb;51:293–300. doi: 10.1073/pnas.51.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Billen D., Bruns L. Relationship between radiation response and the deoxyribonucleic acid replication cycle in bacteria: dependence on the excision-repair system. J Bacteriol. 1970 Aug;103(2):400–403. doi: 10.1128/jb.103.2.400-403.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Billen D. Replication of the bacterial chromosome: location of new initiation sites after irradiation. J Bacteriol. 1969 Mar;97(3):1169–1175. doi: 10.1128/jb.97.3.1169-1175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark A. J. The beginning of a genetic analysis of recombination proficiency. J Cell Physiol. 1967 Oct;70(2 Suppl):165–180. doi: 10.1002/jcp.1040700412. [DOI] [PubMed] [Google Scholar]
  10. Clark D. J. Effects of ionizing radiation on synchronous cultures of Escherichia coli B-r. J Bacteriol. 1968 Oct;96(4):1150–1158. doi: 10.1128/jb.96.4.1150-1158.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doudney C. O. Chloramphenicol effects on DNA replication in UV-damaged bacteria. Mutat Res. 1973 Jan;17(1):1–12. doi: 10.1016/0027-5107(73)90247-9. [DOI] [PubMed] [Google Scholar]
  12. Doudney C. O. Deoxyribonucleic acid replication in UV-damaged bacteria revisited. Mutat Res. 1971 Jun;12(2):121–128. doi: 10.1016/0027-5107(71)90133-3. [DOI] [PubMed] [Google Scholar]
  13. Doudney C. O. Formation of ribonucleic acid during the recovery of the deoxyribonucleic acid synthetic system of bacteria damaged by ultra-violet light. Nature. 1966 Jan 29;209(5022):528–529. doi: 10.1038/209528a0. [DOI] [PubMed] [Google Scholar]
  14. Doudney C. O. Increased resistance of DNA replication to ultraviolet light damage in amino acid-starved bacteria. Biochim Biophys Acta. 1971 Jan 1;228(1):57–66. doi: 10.1016/0005-2787(71)90546-6. [DOI] [PubMed] [Google Scholar]
  15. HILL R. F., FEINER R. R. FURTHER STUDIES OF ULTRAVIOLET-SENSITIVE MUTANTS OF ESCHERICHIA COLI STRAIN B. J Gen Microbiol. 1964 Apr;35:105–114. doi: 10.1099/00221287-35-1-105. [DOI] [PubMed] [Google Scholar]
  16. Hanawalt P. C. The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem Photobiol. 1966 Jan;5(1):1–12. [PubMed] [Google Scholar]
  17. Hewitt R., Gaskins P. Influence of ultraviolet irradiation on chromosome replication in ultraviolet-sensitive bacteria. J Mol Biol. 1971 Nov 28;62(1):215–221. doi: 10.1016/0022-2836(71)90140-9. [DOI] [PubMed] [Google Scholar]
  18. Hill R. F. Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced dark repair ability. Photochem Photobiol. 1965 Jun;4(3):563–568. doi: 10.1111/j.1751-1097.1965.tb09774.x. [DOI] [PubMed] [Google Scholar]
  19. Howard-Flanders P., Theriot L., Stedeford J. B. Some properties of excision-defective recombination-deficient mutants of Escherichia coli K-12. J Bacteriol. 1969 Mar;97(3):1134–1141. doi: 10.1128/jb.97.3.1134-1141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LARK C., LARK K. G. EVIDENCE FOR TWO DISTINCT ASPECTS OF THE MECHANISM REGULATING CHROMOSOME REPLICATION IN ESCHERICHIA COLI. J Mol Biol. 1964 Oct;10:120–136. doi: 10.1016/s0022-2836(64)80032-2. [DOI] [PubMed] [Google Scholar]
  21. Monk M., Peacey M., Gross J. D. Repair of damage induced by ultraviolet light in DNA polymerase-defective Escherichia coli cells. J Mol Biol. 1971 Jun 14;58(2):623–630. doi: 10.1016/0022-2836(71)90376-7. [DOI] [PubMed] [Google Scholar]
  22. Morton R. A., Haynes R. H. Changes in the ultraviolet sensitivity of Escherichia coli during growth in batch cultures. J Bacteriol. 1969 Mar;97(3):1379–1385. doi: 10.1128/jb.97.3.1379-1385.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rowbury R. J. Observations on starvation-induced resistance enhancement (SIRE) in Salmonella typhimurium. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Mar;21(3):297–302. doi: 10.1080/09553007214550331. [DOI] [PubMed] [Google Scholar]
  24. Rudé J., Alper T. Changes in U.V. survival curves of Escherichia coli B-r concomitant with changes in growth conditions. Photochem Photobiol. 1972 Jan;15(1):51–60. doi: 10.1111/j.1751-1097.1972.tb06222.x. [DOI] [PubMed] [Google Scholar]
  25. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  26. Rupp W. D., Wilde C. E., 3rd, Reno D. L., Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):25–44. doi: 10.1016/0022-2836(71)90204-x. [DOI] [PubMed] [Google Scholar]
  27. SETLOW R. B., CARRIER W. L. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231. doi: 10.1073/pnas.51.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sedliaková M., Billen D., Bruns L. A study of the relationship between survival and "repair synthesis" of DNA after ultraviolet light exposure. Photochem Photobiol. 1970 May;11(5):309–317. doi: 10.1111/j.1751-1097.1970.tb06004.x. [DOI] [PubMed] [Google Scholar]
  29. Sedliaková M., Masek F., Bernátová L. Relationship between survival and thymine-dimer excision in ultraviolet-irradiated Escherichia coli. Photochem Photobiol. 1971 Nov;14(5):597–605. doi: 10.1111/j.1751-1097.1971.tb06199.x. [DOI] [PubMed] [Google Scholar]
  30. Sedliaková M., Stefunková E., Bernátová L. Influence of ribosides on ultraviolet resistance of Escherichia coli: role of deoxyribonucleic acid synthesis in the ultraviolet resistance enhancement after amino acid prestarvation. J Bacteriol. 1971 Jul;107(1):16–20. doi: 10.1128/jb.107.1.16-20.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith K. C. DNA synthesis in sensitive and resistant mutants of Escherichia coli B after ultraviolet irradiation. Mutat Res. 1969 Nov-Dec;8(3):481–495. doi: 10.1016/0027-5107(69)90065-7. [DOI] [PubMed] [Google Scholar]
  32. Smith K. C., Meun D. H. Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on post-replication repair of damage due to ultraviolet radiation. J Mol Biol. 1970 Aug;51(3):459–472. doi: 10.1016/0022-2836(70)90001-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES