Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1228–1234. doi: 10.1128/jb.113.3.1228-1234.1973

Repair of Single-Strand Deoxyribonucleic Acid Breaks in Ultraviolet Light-Irradiated Haemophilus influenzae

George J Kantor 1, B J Barnhart 2
PMCID: PMC251687  PMID: 4540247

Abstract

The wild-type strain and mutants of Haemophilus influenzae, sensitive or resistant to ultraviolet light (UV) as defined by colony-forming ability, were examined for their ability to perform the incision and rejoining steps of the deoxyribonucleic acid (DNA) dark repair process. Although UV-induced pyrimidine dimers are excised by the wild-type Rd and a resistant mutant BC200, the expected single-strand DNA breaks could not be detected on alkaline sucrose gradients. Repair of the gap resulting from excision must be rapid when experimental conditions described by us are employed. Single-strand DNA breaks were not detected in a UV-irradiated sensitive mutant (BC100) incapable of excising pyrimidine dimers, indicating that this mutant may be defective in a dimer-recognizing endonuclease. No single-strand DNA breaks were detected in a lysogen BC100(HP1c1) irradiated with a UV dose large enough to induce phage development in 80% of the cells.

Full text

PDF
1228

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G. Induction of streptomycin resistance in sensitive Hemophilus influenzae by extracts containing desoxyribonucleic acid from resistant Hemophilus influenzae. J Exp Med. 1953 Jan;97(1):17–31. doi: 10.1084/jem.97.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnhart B. J., Cox S. H. Radiation sensitivity of Haemophilus influenzae: a composite response. J Bacteriol. 1970 Jul;103(1):9–15. doi: 10.1128/jb.103.1.9-15.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnhart B. J., Cox S. H. Radiation-sensitive and radiation-resistant mutants of Haemophilus influenzae. J Bacteriol. 1968 Jul;96(1):280–282. doi: 10.1128/jb.96.1.280-282.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnhart D. J., Cox S. H. Recovery of Haemophilus influenzae from ultraviolet and x-ray damage. Photochem Photobiol. 1970 Mar;11(3):147–162. doi: 10.1111/j.1751-1097.1970.tb05983.x. [DOI] [PubMed] [Google Scholar]
  5. Freifelder D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J Mol Biol. 1970 Dec 28;54(3):567–577. doi: 10.1016/0022-2836(70)90127-0. [DOI] [PubMed] [Google Scholar]
  6. Ginoza W. The effects of ionizing radiation on nucleic acids of bacteriophages and bacterial cells. Annu Rev Microbiol. 1967;21:325–368. doi: 10.1146/annurev.mi.21.100167.001545. [DOI] [PubMed] [Google Scholar]
  7. HARM W., RUPERT C. S. INFECTION OF TRANSFORMABLE CELLS OF HAEMOPHILUS INFLUENZAE BY BACTERIOPHAGE AND BACTERIOPHAGE DNA. Z Vererbungsl. 1963 Dec 30;94:336–348. doi: 10.1007/BF00897593. [DOI] [PubMed] [Google Scholar]
  8. Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
  9. Kantor G. J. Anomalies in the sedimentation of deoxyribonucleic acid from Haemophilus influenzae in alkaline sucrose gradients. J Bacteriol. 1972 Dec;112(3):1264–1269. doi: 10.1128/jb.112.3.1264-1269.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kantor G. J., Barnhart B. J. Effect of ultraviolet light on division and deoxyribonucleic acid synthesis in Haemophilus influenzae. J Bacteriol. 1970 Jul;103(1):1–8. doi: 10.1128/jb.103.1.1-8.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lett J. T., Caldwell I., Little J. G. Repair of x-ray damage to the DNA in Micrococcus radiodurans: the effect of 5-bromodeoxyuridine. J Mol Biol. 1970 Mar;48(3):395–408. doi: 10.1016/0022-2836(70)90053-7. [DOI] [PubMed] [Google Scholar]
  12. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  13. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  14. STUY J. H. Studies on the radiation inactivation of microorganisms. V. Deoxyribonucleic acid metabolism in ultraviolet-irradiated Haemophilus influenzae. J Bacteriol. 1959 Jul;78(1):49–58. doi: 10.1128/jb.78.1.49-58.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol. 1968;33:209–218. doi: 10.1101/sqb.1968.033.01.024. [DOI] [PubMed] [Google Scholar]
  17. Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES