Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Mar;113(3):1333–1344. doi: 10.1128/jb.113.3.1333-1344.1973

Involvement of Threonine Deaminase in Repression of the Isoleucine-Valine and Leucine Pathways in Saccharomyces cerevisiae

Arthur P Bollon a,1, P T Magee a
PMCID: PMC251702  PMID: 4570783

Abstract

l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNAleu is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.

Full text

PDF
1333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berberich M. A., Gots J. S. A structural gene mutation in Salmonella typhimurium resulting in repressibility of adenylosuccinase. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1254–1261. doi: 10.1073/pnas.54.4.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betz J. L., Hereford L. M., Magee P. T. Threonine deaminases from Saccharomyces cerevisiae mutationally altered in regulatory properties. Biochemistry. 1971 May 11;10(10):1818–1824. doi: 10.1021/bi00786a014. [DOI] [PubMed] [Google Scholar]
  3. Blasi F., Barton R. W., Kovach J. S., Goldberger R. F. Interaction between the first enzyme for histidine biosynthesis and histidyl transfer ribonucleic acid. J Bacteriol. 1971 May;106(2):508–513. doi: 10.1128/jb.106.2.508-513.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bollon A. P., Magee P. T. Involvement of threonine deaminase in multivalent repression of the isoleucine-valine pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2169–2172. doi: 10.1073/pnas.68.9.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunner A., Devillers-Mire A., Robichon-Szulmajster H. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Altered threonine deaminase in an is-1 mutant responding to threonine. Eur J Biochem. 1969 Aug;10(1):172–183. [PubMed] [Google Scholar]
  6. Bussey H., Umbarger H. E. Biosynthesis of branched-chain amino acids in yeast: regulation of synthesis of the enzymes of isoleucine and valine biosynthesis. J Bacteriol. 1969 May;98(2):623–628. doi: 10.1128/jb.98.2.623-628.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cove D. J., Pateman J. A. Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J Bacteriol. 1969 Mar;97(3):1374–1378. doi: 10.1128/jb.97.3.1374-1378.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duda E., Staub M., Venetianer P., Dénes G. Interaction between phenylalanine-tRNA and the allosteric first enzyme of the aromatic amino acid biosynthetic pathway. Biochem Biophys Res Commun. 1968 Sep 30;32(6):992–997. doi: 10.1016/0006-291x(68)90126-5. [DOI] [PubMed] [Google Scholar]
  9. Dwyer S. B., Umbarger H. E. Isoleucine and valine metabolism of Escherichia coli. XVI. Pattern of multivalent repression in strain K-12. J Bacteriol. 1968 May;95(5):1680–1684. doi: 10.1128/jb.95.5.1680-1684.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldberg R. S., Datta P. Threonine deaminase: a novel activity stain on polyacrylamide gels. Science. 1970 Dec 25;170(3965):1414–1415. doi: 10.1126/science.170.3965.1414. [DOI] [PubMed] [Google Scholar]
  12. Hatfield G. W., Burns R. O. Specific binding of leucyl transfer RNA to an immature form of L-threonine deaminase: its implications in repression. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1027–1035. doi: 10.1073/pnas.66.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KAKAR S. N., WAGNER R. P. GENETIC AND BIOCHEMICAL ANALYSIS OF ISOLEUCINE-VALINE MUTANTS OF YEAST. Genetics. 1964 Feb;49:213–222. doi: 10.1093/genetics/49.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kovach J. S., Phang J. M., Ference M., Goldberger R. F. Studies on repression of the histidine operon. II. The role of the first enzyme in control of the histidine system. Proc Natl Acad Sci U S A. 1969 Jun;63(2):481–488. doi: 10.1073/pnas.63.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leisinger T., Vogel R. H., Vogel H. J. Repression-dependent alteration of an arginine enzyme in Escherichia coli. Proc Natl Acad Sci U S A. 1969 Oct;64(2):686–692. doi: 10.1073/pnas.64.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lomax C. A., Woods R. A. Prototrophic regulatory mutants of adenylosuccinate synthetase in yeast. Nat New Biol. 1971 Jan 27;229(4):116–116. doi: 10.1038/newbio229116a0. [DOI] [PubMed] [Google Scholar]
  17. Magee P. T., Hereford L. M. Multivalent repression of isoleucine- valine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jun;98(3):857–862. doi: 10.1128/jb.98.3.857-862.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLaughlin C. S., Magee P. T., Hartwell L. H. Role of isoleucyl-transfer ribonucleic acid synthetase in ribonucleic acid synthesis and enzyme repression in yeast. J Bacteriol. 1969 Nov;100(2):579–584. doi: 10.1128/jb.100.2.579-584.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. 3. MAP ORDER OF THE STRUCTURAL GENES AND OPERATOR GENES. J Bacteriol. 1965 Mar;89:661–664. doi: 10.1128/jb.89.3.661-664.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. I. GENETIC DEREPRESSION OF ENZYME FORMATION. J Bacteriol. 1964 Mar;87:566–573. doi: 10.1128/jb.87.3.566-573.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. II. IDENTIFICATION OF TWO OPERATOR GENES. J Bacteriol. 1965 Mar;89:654–660. doi: 10.1128/jb.89.3.654-660.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robichon-Szulmajster H., Magee P. T. The regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. I. Threonine deaminase. Eur J Biochem. 1968 Feb;3(4):492–501. doi: 10.1111/j.1432-1033.1967.tb19558.x. [DOI] [PubMed] [Google Scholar]
  23. Roth J. R., Antón D. N., Hartman P. E. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J Mol Biol. 1966 Dec 28;22(2):305–323. doi: 10.1016/0022-2836(66)90134-3. [DOI] [PubMed] [Google Scholar]
  24. SOMERVILLE R. L., YANOFSKY C. STUDIES ON THE REGULATION OF TRYPTOPHAN BIOSYNTHESIS IN ESCHERICHIA COLI. J Mol Biol. 1965 Apr;11:747–759. doi: 10.1016/s0022-2836(65)80032-8. [DOI] [PubMed] [Google Scholar]
  25. Satyanarayana T., Umbarger H. E., Lindegren G. Biosynthesis of branched-chain amino acids in yeast: correlation of biochemical blocks and genetic lesions in leucine auxotrophs. J Bacteriol. 1968 Dec;96(6):2012–2017. doi: 10.1128/jb.96.6.2012-2017.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thuriaux P., Minet M., ten Berge A. M., Zimmermann F. K. Genetic fine structure and function of mutants at the ilv1-gene locus of Saccharomyces cervisiae. Mol Gen Genet. 1971;112(1):60–72. doi: 10.1007/BF00266933. [DOI] [PubMed] [Google Scholar]
  27. Zimmermann F. K., Gundelach E. Intragenic complementation, hybrid enzyme formation and dominance in diploid cells of Saccharomyces cerevisiae. Mol Gen Genet. 1969;103(4):348–362. doi: 10.1007/BF00383485. [DOI] [PubMed] [Google Scholar]
  28. Zimmermann F. K., Schmiedt I., ten Berge A. M. Dominance and recessiveness at the protein level in mutant x wildtype crosses in Sacchaomyces cerevisiae. Mol Gen Genet. 1969 Aug 15;104(4):321–330. doi: 10.1007/BF00334231. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES