Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Apr;114(1):357–366. doi: 10.1128/jb.114.1.357-366.1973

Deoxyribonucleic Acid Repair in a Highly Radiation-Resistant Strain of Salmonella typhimurium1

Roland Davies a,2, Anthony J Sinskey a, David Botstein a
PMCID: PMC251774  PMID: 4572719

Abstract

Deoxyribonucleic acid repair was studied in gamma-irradiated wild-type Salmonella typhimurium and in a radiation-resistant derivative 20 times more resistant than wild type. After exposure to 20 or 50 krad, the wild-type strain (DB21) degraded 30 to 50% of its prelabeled DNA into acid-soluble fragments, whereas the radioresistant strain degraded less than 15% after 4 h of incubation. Post-irradiation synthesis of DNA in the wild-type strain DB21 was reduced after a dose of 20 krad and totally inhibited after exposure to 200 krad. With radiation-resistant strain, D21R6008, on the other hand, DNA synthesis was delayed after a dose of 200 krad but not inhibited. Doses of 20 and 200 krad produced a similar number of single-strand breaks in the DNA of both strains as determined by zone sedimentation analysis in alkaline sucrose gradients. The radiation-resistant strain D21R6008, on the other hand, DNA synthesis was strand breaks in its DNA and repairs these damages more rapidly than wild-type Salmonella.

Full text

PDF
357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allwood M. C., Jordan D. C. Apparent absence of relationship between repair of single strand breaks in DNA and gamma radiation resistance in Salmonella thompson. Arch Mikrobiol. 1970;70(2):161–166. doi: 10.1007/BF00412207. [DOI] [PubMed] [Google Scholar]
  2. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. doi: 10.1016/0022-2836(68)90185-x. [DOI] [PubMed] [Google Scholar]
  4. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  5. COLOBERT L. Etude de la lyse de salmonelles pathogènes provoquée par le lysozyme, après délipidation partielle de la paroi externe. Ann Inst Pasteur (Paris) 1958 Aug;95(2):156–167. [PubMed] [Google Scholar]
  6. Clark A. J., Chamberlin M., Boyce R. P., Howard-Flanders P. Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli K12. J Mol Biol. 1966 Aug;19(2):442–454. doi: 10.1016/s0022-2836(66)80015-3. [DOI] [PubMed] [Google Scholar]
  7. Davies R., Sinskey A. J. Radiation-resistant mutants of Salmonella typhimurium LT2: development and characterization. J Bacteriol. 1973 Jan;113(1):133–144. doi: 10.1128/jb.113.1.133-144.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Driedger A. A. Are there multiple attachments between bacterial DNA and the cell membrane? Can J Microbiol. 1970 Sep;16(9):881–882. doi: 10.1139/m70-149. [DOI] [PubMed] [Google Scholar]
  9. Freifelder D. Rate of production of single-strand breaks in DNA by x-irradiation in situ. J Mol Biol. 1968 Jul 28;35(2):303–309. doi: 10.1016/s0022-2836(68)80026-9. [DOI] [PubMed] [Google Scholar]
  10. Hildebrand C. E., Pollard E. C. The study of ionizing radiation effects on Escherichia coli by density gradient sedimentation. Biophys J. 1969 Nov;9(11):1312–1322. doi: 10.1016/S0006-3495(69)86453-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard-Flanders P. Genes that control DNA repair and genetic recombination in Escherichia coli. Adv Biol Med Phys. 1968;12:299–317. doi: 10.1016/b978-1-4831-9928-3.50016-3. [DOI] [PubMed] [Google Scholar]
  12. Hudnik-Plevnik T. A., Djordjević N. Survival, deoxyribonucleic acid breakdown, and synthesis in Salmonella typhimurium as compared with Escherichia coli B strains. J Bacteriol. 1970 Aug;103(2):342–347. doi: 10.1128/jb.103.2.342-347.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. IDZIAK E. S., THATCHER F. S. SOME PHYSIOLOGICAL ASPECTS OF MUTANTS OF ESCHERICHIA COLI RESISTANT TO GAMMA IRRADIATION. Can J Microbiol. 1964 Oct;10:683–697. doi: 10.1139/m64-088. [DOI] [PubMed] [Google Scholar]
  14. Kapp D. S., Smith K. C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. J Bacteriol. 1970 Jul;103(1):49–54. doi: 10.1128/jb.103.1.49-54.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lett J. T., Caldwell I., Little J. G. Repair of x-ray damage to the DNA in Micrococcus radiodurans: the effect of 5-bromodeoxyuridine. J Mol Biol. 1970 Mar;48(3):395–408. doi: 10.1016/0022-2836(70)90053-7. [DOI] [PubMed] [Google Scholar]
  16. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  17. Morton R. A., Haynes R. H. Changes in the ultraviolet sensitivity of Escherichia coli during growth in batch cultures. J Bacteriol. 1969 Mar;97(3):1379–1385. doi: 10.1128/jb.97.3.1379-1385.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paterson M. C., Boyle J. M., Setlow R. B. Ultraviolet- and X-ray-induced responses of a deoxyribonucleic acid polymerase-deficient mutant of Escherichia coli. J Bacteriol. 1971 Jul;107(1):61–67. doi: 10.1128/jb.107.1.61-67.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STAPLETON G. E. Variations in the sensitivity of escherichia coli to ionizing radiations during the growth cycle. J Bacteriol. 1955 Oct;70(4):357–362. doi: 10.1128/jb.70.4.357-362.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  21. Smith K. C. DNA synthesis in sensitive and resistant mutants of Escherichia coli B after ultraviolet irradiation. Mutat Res. 1969 Nov-Dec;8(3):481–495. doi: 10.1016/0027-5107(69)90065-7. [DOI] [PubMed] [Google Scholar]
  22. Smith K. C., O'Leary M. E. The pitfalls of measuring DNA synthesis kinetics as exemplifed in ultraciolet radiation studies. Biochim Biophys Acta. 1968 Dec 17;169(2):430–438. doi: 10.1016/0005-2787(68)90051-8. [DOI] [PubMed] [Google Scholar]
  23. Stavrić S., Dighton M., Dickie N. DNA-strand breaks in two strains of Escherichia coli after exposure to -rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;20(2):101–110. doi: 10.1080/09553007114550951. [DOI] [PubMed] [Google Scholar]
  24. Town C. D., Smith K. C., Kaplan H. S. DNA polymerase required for rapid repair of x-ray--induced DNA strand breaks in vivo. Science. 1971 May 21;172(3985):851–854. doi: 10.1126/science.172.3985.851. [DOI] [PubMed] [Google Scholar]
  25. Town C. D., Smith K. C., Kaplan H. S. Production and repair of radiochemical damage in Escherichia coli deoxyribonucleic acid; its modification by culture conditions and relation to survival. J Bacteriol. 1971 Jan;105(1):127–135. doi: 10.1128/jb.105.1.127-135.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tremblay G. Y., Daniels M. J., Schaechter M. Isolation of a cell membrane-DNA-nascent RNA complex from bacteria. J Mol Biol. 1969 Feb 28;40(1):65–76. doi: 10.1016/0022-2836(69)90296-4. [DOI] [PubMed] [Google Scholar]
  27. Wing J. P., Levine M., Smith H. O. Recombination-deficient mutant of Salmonella typhimurium. J Bacteriol. 1968 May;95(5):1828–1834. doi: 10.1128/jb.95.5.1828-1834.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES