Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 May;114(2):685–694. doi: 10.1128/jb.114.2.685-694.1973

Metabolism of d-Serine in Escherichia coli K-12: Mechanism of Growth Inhibition1

Sharon D Cosloy a,2, Elizabeth McFall a
PMCID: PMC251827  PMID: 4574697

Abstract

Without significant killing, d-serine at concentrations greater than 50 μg/ml inhibits growth in minimal media of mutants of Escherichia coli K-12 unable to form d-serine deaminase. The mutants eventually recover at lower concentrations. There is no evidence of d-serine toxicity in rich media. Toxicity is partially reversed by l-serine. d-Serine does not interfere with l-serine activation, one-carbon metabolism, or (Cronan, personal communication) formation of phosphatidylserine. Pizer (personal communication) finds, however, that it is a powerful feedback inhibitor of the first enzyme of l-serine biosynthesis. In the presence of l-serine, the residual toxicity is largely and noncompetitively over come by pantothenate, indicating that d-serine inhibits growth by affecting two targets: pantothenate biosynthesis and l-serine biosynthesis. l-Serine causes transient growth inhibition in E. coli K-12. Contaminating l-serine in d-serine preparations contributes to the d-serine inhibitory response.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cosloy S. D. D-serine transport system in Escherichia coli K-12. J Bacteriol. 1973 May;114(2):679–684. doi: 10.1128/jb.114.2.679-684.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cosloy S. D., McFall E. L-Serine-sensitive mutants of Escherichia coli K-12. J Bacteriol. 1970 Sep;103(3):840–841. doi: 10.1128/jb.103.3.840-841.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DIVEN W. F., SCHOLZ J. J., JOHNSTON R. B. PURIFICATION AND PROPERTIES OF THE ALANINE RACEMASE FROM BACILLUS SUBTILIS. Biochim Biophys Acta. 1964 May 4;85:322–332. doi: 10.1016/0926-6569(64)90253-6. [DOI] [PubMed] [Google Scholar]
  4. DURHAM N. N., MILLIGAN R. A mechanism of growth inhibition by D-serine in a Flavobacterium. Biochem Biophys Res Commun. 1962 May 11;7:342–345. doi: 10.1016/0006-291x(62)90311-x. [DOI] [PubMed] [Google Scholar]
  5. DURHAM N. N., MILLIGAN R. Reversal of the D-serine inhibition of growth and division in a Flavobacterium. Biochem Biophys Res Commun. 1961 Jun 2;5:144–147. doi: 10.1016/0006-291x(61)90028-6. [DOI] [PubMed] [Google Scholar]
  6. GRULA E. A., GRULA M. M. INHIBITION IN SYNTHESIS OF BETA-ALANINE BY D-SERINE. Biochim Biophys Acta. 1963 Sep 10;74:776–778. doi: 10.1016/0006-3002(63)91430-6. [DOI] [PubMed] [Google Scholar]
  7. GRULA M. M., GRULA E. A. Cell division in a species of Erwinia IV. Metabolic blocks in panothenate biosynthesis and their relationship to inhibition of cell division. J Bacteriol. 1962 May;83:989–997. doi: 10.1128/jb.83.5.989-997.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KANFER J. N., KENNEDY E. P. Synthesis of phosphatidylserine by Escherichia coli. J Biol Chem. 1962 Jan;237:PC270–PC271. [PubMed] [Google Scholar]
  9. Katze J. R., Konigsberg W. Purification and properties of seryl transfer ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1970 Mar 10;245(5):923–930. [PubMed] [Google Scholar]
  10. MAAS W. K., DAVIS B. D. Pantothenate studies. I. Interference by D-serine and L-aspartic acid with pantothenate synthesis in Escherichia coli. J Bacteriol. 1950 Dec;60(6):733–745. doi: 10.1128/jb.60.6.733-745.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MCFALL E. GENETIC STRUCTURE OF THE D-SERINE DEAMINASE SYSTEM OF ESCHERICHIA COLI. J Mol Biol. 1964 Sep;9:746–753. doi: 10.1016/s0022-2836(64)80179-0. [DOI] [PubMed] [Google Scholar]
  12. McFall E. Mapping of the d-serine deaminase region in Escherichia coli K-12. Genetics. 1967 Jan;55(1):91–99. doi: 10.1093/genetics/55.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
  14. RACHMELER M., GERHART J., ROSNER J. Limited thymidine uptake in Escherichia coli due to an inducible thymidine phosphorylase. Biochim Biophys Acta. 1961 Apr 29;49:222–225. doi: 10.1016/0006-3002(61)90888-5. [DOI] [PubMed] [Google Scholar]
  15. Schwartz J. H. Initiation of protein synthesis under the direction of tobacco mosaic virus RNA in cell-free extracts of Escherichia coli. J Mol Biol. 1967 Dec 14;30(2):309–322. [PubMed] [Google Scholar]
  16. Whitney J. G., Grula E. A. Incorporation of D-serine into the cell wall mucopeptide of Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1964;14:375–381. doi: 10.1016/s0006-291x(64)80013-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES