Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 May;114(2):782–789. doi: 10.1128/jb.114.2.782-789.1973

Sodium and Other Inorganic Growth Requirements of Bacteroides amylophilus1

Daniel R Caldwell a, Mark Keeney a, Justice S Barton a, Juanita F Kelley a
PMCID: PMC251839  PMID: 4735891

Abstract

Bacteroides amylophilus has growth requirements for Na+, PO43−, K+, and small quantities of Mg2+. No requirement could be shown for Ca2+ in media previously found growth-yield-limiting for Bacteroides succinogenes. Deletion of Co2+, Mn2+, Cl, or SO42− did not affect growth. Quantitative studies indicate that Na+, K+, and PO43− have differing effects on the growth of B. amylophilus. A concentration of sodium and potassium ions affects both growth rate and growth yield, whereas a phosphate concentration markedly affects growth yield, but affects growth rate only slightly, if at all. The sodium requirement of B. amylophilus is absolute. It cannot be replaced by K+, Li+, Rb+, or Cs+. The latter three monovalent cations are toxic to B. amylophilus if supplied to the organism at Na+-replacing concentrations. K+ is inactive at similar concentrations. The K+ requirement of B. amylophilus may be satisfied by Rb+. The concentration of Na+ required by B. amylophilus for abundant growth suggests that B. amylophilus should be considered a slightly halophilic organism. The results suggest that Na+ may be a more frequent requirement among terrestial bacteria obtained from relatively low-salt environments than has been previously believed.

Full text

PDF
782

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON M. J., BRYANT M. P. Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch Biochem Biophys. 1963 May;101:269–277. doi: 10.1016/s0003-9861(63)80012-0. [DOI] [PubMed] [Google Scholar]
  2. Albert A., Gledhill W. S. The choice of a chelating agent for inactivating trace metals: I. A survey of commercially available chelating agents. Biochem J. 1947;41(4):529–533. [PMC free article] [PubMed] [Google Scholar]
  3. Allison M. J. Biosynthesis of amono acids by ruminal microorganisms. J Anim Sci. 1969 Nov;29(5):797–807. doi: 10.2527/jas1969.295797x. [DOI] [PubMed] [Google Scholar]
  4. BLACKBURN T. H., HOBSON P. N. Further studies on the isolation of proteolytic bacteria from the sheep rumen. J Gen Microbiol. 1962 Sep;29:69–81. doi: 10.1099/00221287-29-1-69. [DOI] [PubMed] [Google Scholar]
  5. BRYANT M. P. Bacterial species of the rumen. Bacteriol Rev. 1959 Sep;23(3):125–153. doi: 10.1128/br.23.3.125-153.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRYANT M. P., ROBINSON I. M. Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol. 1962 Oct;84:605–614. doi: 10.1128/jb.84.4.605-614.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caldwell D. R., Keeney M., Van Soest P. J. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus. J Bacteriol. 1969 May;98(2):668–676. doi: 10.1128/jb.98.2.668-676.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caldwell D. R., White D. C., Bryant M. P., Doetsch R. N. Specificity of the heme requirement for growth of Bacteroides ruminicola. J Bacteriol. 1965 Dec;90(6):1645–1654. doi: 10.1128/jb.90.6.1645-1654.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DRYDEN L. P., HARTMAN A. M., BRYANT M. P., ROBINSON I. M., MOORE L. A. Production of vitamin B12 and vitamin B12 analogues by pure cultures of ruminal bacteria. Nature. 1962 Jul 14;195:201–202. doi: 10.1038/195201b0. [DOI] [PubMed] [Google Scholar]
  10. EMERY R. S., SMITH C. K., FAI TO L. Utilization of inorganic sulfate by rumen microorganisms. II. The ability of single strains of rumen bacteria to utilize inorganic sulfate. Appl Microbiol. 1957 Nov;5(6):363–366. doi: 10.1128/am.5.6.363-366.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HAMLIN L. J., HUNGATE R. E. Culture and physiology of a starch-digesting bacterium (Bacteroides amylophilus n. sp.) from the bovine rumen. J Bacteriol. 1956 Oct;72(4):548–554. doi: 10.1128/jb.72.4.548-554.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HUNGATE R. E., BRYANT M. P., MAH R. A. THE RUMEN BACTERIA AND PROTOZOA. Annu Rev Microbiol. 1964;18:131–166. doi: 10.1146/annurev.mi.18.100164.001023. [DOI] [PubMed] [Google Scholar]
  13. HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hobson P. N., McDougall E. I., Summers R. The nitrogen sources of Bacteroides amylophilus. J Gen Microbiol. 1968 Mar;50(3 Suppl):i–i. [PubMed] [Google Scholar]
  15. Hopgood M. F., Walker D. J. Succinic acid production by rumen bacteria. II. Radioisotope studies on succinate production by Ruminococcus flavefaciens. Aust J Biol Sci. 1967 Feb;20(1):183–192. [PubMed] [Google Scholar]
  16. JONES G. A., MACLEOD R. A., BLACKWOOD A. C. UREOLYTIC RUMEN BACTERIA. II. EFFECT OF INORGANIC IONS OF UREASE ACTIVITY. Can J Microbiol. 1964 Jun;10:379–387. doi: 10.1139/m64-051. [DOI] [PubMed] [Google Scholar]
  17. Joyner A. E., Jr, Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol. 1966 Nov;92(5):1321–1330. doi: 10.1128/jb.92.5.1321-1330.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LESTER G. Requirement for potassium by bacteria. J Bacteriol. 1958 Apr;75(4):426–428. doi: 10.1128/jb.75.4.426-428.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MACLEOD R. A., ONOFREY E. Nutrition and metabolism of marine bacteria. II. Observations on the relation of sea water to the growth of marine bacteria. J Bacteriol. 1956 Jun;71(6):661–667. doi: 10.1128/jb.71.6.661-667.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MACLEOD R. A., ONOFREY E. Nutrition and metabolism of marine bacteria. VI. Quantitative requirements for halides, magnesium, calcium, and iron. Can J Microbiol. 1957 Aug;3(5):753–759. doi: 10.1139/m57-085. [DOI] [PubMed] [Google Scholar]
  21. MACLEOD R. A. THE QUESTION OF THE EXISTENCE OF SPECIFIC MARINE BACTERIA. Bacteriol Rev. 1965 Mar;29:9–24. [PMC free article] [PubMed] [Google Scholar]
  22. MARTIN J. E., ARRINGTON L. R., MOORE J. E., AMMERMAN C. B., DAVIS G. K., SHIRLEY R. L. EFFECT OF MAGNESIUM AND SULFUR UPON CELLULOSE DIGESTION OF PURIFIED RATIONS BY CATTLE AND SHEEP. J Nutr. 1964 May;83:60–64. doi: 10.1093/jn/83.1.60. [DOI] [PubMed] [Google Scholar]
  23. McNaught M. L., Owen E. C., Smith J. A. The utilization of non-protein nitrogen in the bovine rumen. 6. The effect of metals on the activity of the rumen bacteria. Biochem J. 1950 Jan;46(1):36–43. doi: 10.1042/bj0460036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Brien R. W., Frost G. M., Stern J. R. Enzymatic analysis of the requirement for sodium in aerobic growth of Salmonella typhimurium on citrate. J Bacteriol. 1969 Aug;99(2):395–400. doi: 10.1128/jb.99.2.395-400.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Brien R. W., Stern J. R. Role of sodium in determining alternate pathways of aerobic citrate catabolism in Aerobacter aerogenes. J Bacteriol. 1969 Aug;99(2):389–394. doi: 10.1128/jb.99.2.389-394.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PRESCOTT J. M. Utilization of sulfur compounds by Streptococcus bovis. J Bacteriol. 1961 Nov;82:724–728. doi: 10.1128/jb.82.5.724-728.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SISTROM W. R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Jun;22:778–785. doi: 10.1099/00221287-22-3-778. [DOI] [PubMed] [Google Scholar]
  28. VALENTINE R. C., JACKSON R. L., WOLFE R. S. Role of ferredoxin in hydrogen metabolism of Micrococcus lactilyticus. Biochem Biophys Res Commun. 1962 Jun 4;7:453–456. doi: 10.1016/0006-291x(62)90334-0. [DOI] [PubMed] [Google Scholar]
  29. WHITE D. C., BRYANT M. P., CALDWELL D. R. Cytochromelinked fermentation in Bacteroides ruminicola. J Bacteriol. 1962 Oct;84:822–828. doi: 10.1128/jb.84.4.822-828.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES