Abstract
After nitrosoguanidine (N-methyl-N′-nitro-N-nitrosoguanidine) mutagenesis, two Bacillus subtilis mutants (div IV-A1 and div IV-B1) were isolated that are defective in the location of division site along cell length. Both mutations were transferred into strain CU403 by transformation, and their properties were studied in the CU403 genetic background. Location of divisions in close proximity to cell pole regions in both mutants results in minicell production. Purified minicells contain a ratio of ribonucleic acid to protein comparable to that found in the parent cells. Autoradiographs of 3H-thymine incorporation into deoxyribonucleic acid (DNA), thymine-2-14C incorporation into DNA, electron micrographs, and chemical analyses for DNA all fail to demonstrate DNA in the minicells. Minicells produced by both mutants are highly motile, an indication of functional energy metabolism. Electron micrographs reveal that minicells are produced by a structurally normal division mechanism and that minicells contain a normal cell surface. The div IV-A1 mutation has been mapped by PBS1 transduction linked to ura. The div IV-B1 mutation is closely linked to pheA by both PBS1 transduction and by co-transformation.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. MINIATURE escherichia coli CELLS DEFICIENT IN DNA. Proc Natl Acad Sci U S A. 1967 Feb;57(2):321–326. doi: 10.1073/pnas.57.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boylan R. J., Mendelson N. H., Brooks D., Young F. E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol. 1972 Apr;110(1):281–290. doi: 10.1128/jb.110.1.281-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caro L. G., Schnös M. Tritium and Phosphorus-32 in High-Resolution Autoradiography. Science. 1965 Jul 2;149(3679):60–62. doi: 10.1126/science.149.3679.60. [DOI] [PubMed] [Google Scholar]
- Cerdá-Olmedo E., Hanawalt P. C., Guerola N. Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome. J Mol Biol. 1968 May 14;33(3):705–719. doi: 10.1016/0022-2836(68)90315-x. [DOI] [PubMed] [Google Scholar]
- Cohen A., Fisher W. D., Curtiss R., 3rd, Adler H. I. The properties of DNA transferred to minicells during conjugation. Cold Spring Harb Symp Quant Biol. 1968;33:635–641. doi: 10.1101/sqb.1968.033.01.071. [DOI] [PubMed] [Google Scholar]
- Cole R. M., Popkin T. J., Boylan R. J., Mendelson N. H. Ultrastructure of a temperature-sensitive rod- mutant of Bacillus subtilis. J Bacteriol. 1970 Sep;103(3):793–810. doi: 10.1128/jb.103.3.793-810.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol. 1971 Mar 24;230(12):122–125. doi: 10.1038/newbio230122a0. [DOI] [PubMed] [Google Scholar]
- Hirota Y., Jacob F., Ryter A., Buttin G., Nakai T. On the process of cellular division in Escherichia coli. I. Asymmetrical cell division and production of deoxyribonucleic acid-less bacteria. J Mol Biol. 1968 Jul 14;35(1):175–192. doi: 10.1016/s0022-2836(68)80046-4. [DOI] [PubMed] [Google Scholar]
- Hoch J. A., Anagnostopoulos C. Chromosomal location and properties of radiation sensitivity mutations in Bacillus subtilis. J Bacteriol. 1970 Aug;103(2):295–301. doi: 10.1128/jb.103.2.295-301.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang P. Y., Goodman R. N. Morphology and ultrastructure of normal rod-shaped and filamentous forms of Erwinia amylovora. J Bacteriol. 1970 Jun;102(3):862–866. doi: 10.1128/jb.102.3.862-866.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye M. Unlinking of cell division from deoxyribonucleic acid replication in a temperature-sensitive deoxyribonucleic acid synthesis mutant of Escherichia coli. J Bacteriol. 1969 Sep;99(3):842–850. doi: 10.1128/jb.99.3.842-850.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inselburg J. Segregation into and replication of plasmid deoxyribonucleic acid in chromosomeless segregants of Escherichia coli. J Bacteriol. 1970 Jun;102(3):642–647. doi: 10.1128/jb.102.3.642-647.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iverson G. M. Ability of CBA mice to produce anti-idiotypic sera to 5563 myeloma protein. Nature. 1970 Jul 18;227(5255):273–274. doi: 10.1038/227273a0. [DOI] [PubMed] [Google Scholar]
- JENSEN R. A., HAAS F. L. ANALYSIS OF ULTRAVIOLET LIGHT-INDUCED MUTAGENESIS BY DNA TRANSFORMATION IN BACILLUS SUBTILIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1109–1116. doi: 10.1073/pnas.50.6.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karamata D., McConnell M., Rogers H. J. Mapping of rod mutants of Bacillus subtilis. J Bacteriol. 1972 Jul;111(1):73–79. doi: 10.1128/jb.111.1.73-79.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass L. R., Yarmolinsky M. B. Segregation of functional sex factor into minicells. Proc Natl Acad Sci U S A. 1970 Jul;66(3):815–822. doi: 10.1073/pnas.66.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mendelson N. H. Can defective segregation prevent initiation? Cold Spring Harb Symp Quant Biol. 1968;33:313–316. doi: 10.1101/sqb.1968.033.01.035. [DOI] [PubMed] [Google Scholar]
- Mendelson N. H., Cole R. M. Genetic regulation of cell division initiation in Bacillus subtilis. J Bacteriol. 1972 Nov;112(2):994–1003. doi: 10.1128/jb.112.2.994-1003.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H. Division site regulation in a temperature-sensitive mutant of Bacillus subtilis. J Bacteriol. 1972 Jul;111(1):298–300. doi: 10.1128/jb.111.1.298-300.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson N. H. Nuclear segregation without DNA replication in Bacillus subtilis. Biochim Biophys Acta. 1969 Sep 17;190(1):132–138. doi: 10.1016/0005-2787(69)90162-2. [DOI] [PubMed] [Google Scholar]
- Neale E. K., Chapman G. B. Effect of low temperature on the growth and fine structure of Bacillus subtilis. J Bacteriol. 1970 Oct;104(1):518–528. doi: 10.1128/jb.104.1.518-528.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeve J. N., Mendelson N. H. Cell morphology of Bacillus subtilis: the effect of genetic background on the expression of a rod - gene. Mol Gen Genet. 1972;119(1):11–26. doi: 10.1007/BF00270440. [DOI] [PubMed] [Google Scholar]
- Roozen K. J., Fenwick R. G., Jr, Curtiss R., 3rd Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12. J Bacteriol. 1971 Jul;107(1):21–33. doi: 10.1128/jb.107.1.21-33.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutberg L. Mapping of a temperate bacteriophage active on Bacillus subtilis. J Virol. 1969 Jan;3(1):38–44. doi: 10.1128/jvi.3.1.38-44.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Alstyne D., Simon M. I. Division mutants of Bacillus subtilis: isolation and PBS1 transduction of division-specific markers. J Bacteriol. 1971 Dec;108(3):1366–1379. doi: 10.1128/jb.108.3.1366-1379.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]







