Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1967 Sep;94(3):719–733. doi: 10.1128/jb.94.3.719-733.1967

Genetic Studies of Sulfadiazine-resistant and Methionine-requiring Neisseria Isolated From Clinical Material

B Wesley Catlin 1
PMCID: PMC251944  PMID: 4962305

Abstract

Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met clones tested against recipients having nonidentical Sul-r/Met mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species.

Full text

PDF
719

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN G. M. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J Biol Chem. 1962 Feb;237:536–540. [PubMed] [Google Scholar]
  2. CATLIN B. W., CUNNINGHAM L. S. GENETIC TRANSFORMATION OF NEISSERIA CATARRHALIS BY DEOXYRIBONUCLEATE PREPARATIONS HAVING DIFFERENT AVERAGE BASE COMPOSITIONS. J Gen Microbiol. 1964 Dec;37:341–352. doi: 10.1099/00221287-37-3-341. [DOI] [PubMed] [Google Scholar]
  3. CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
  4. CATLIN B. W., SCHLOER G. M. A defined agar medium for genetic transformation of Neisseria meningitidis. J Bacteriol. 1962 Mar;83:470–474. doi: 10.1128/jb.83.3.470-474.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CATLIN B. W. Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime. J Bacteriol. 1960 Apr;79:579–590. doi: 10.1128/jb.79.4.579-590.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cauthen S. E., Foster M. A., Woods D. D. Methionine synthesis by extracts of Salmonella typhimurium. Biochem J. 1966 Feb;98(2):630–635. doi: 10.1042/bj0980630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DEMAIN A. L. CONTAMINATION OF COMMERCIAL L-LEUCINE PREPARATIONS WITH METHIONINE AND CYSTINE. J Bacteriol. 1965 Apr;89:1162–1162. doi: 10.1128/jb.89.4.1162-1162.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis B. D., Maas W. K. Analysis of the Biochemical Mechanism of Drug Resistance in Certain Bacterial Mutants. Proc Natl Acad Sci U S A. 1952 Sep;38(9):775–785. doi: 10.1073/pnas.38.9.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EICKHOFF T. C., FINLAND M. CHANGING SUSCEPTIBILITY OF MENINGOCOCCI TO ANTIMICROBIAL AGENTS. N Engl J Med. 1965 Feb 25;272:395–398. doi: 10.1056/NEJM196502252720804. [DOI] [PubMed] [Google Scholar]
  12. Ephrussi-Taylor H., Gray T. C. Genetic studies of recombining DNA in pneumococcal transformation. J Gen Physiol. 1966 Jul;49(6):211–231. doi: 10.1085/jgp.49.6.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grabow W. O., Smit J. A. Methionine synthesis in Proteus mirabilis. J Gen Microbiol. 1967 Jan;46(1):47–57. doi: 10.1099/00221287-46-1-47. [DOI] [PubMed] [Google Scholar]
  14. HATCH F. T., LARRABEE A. R., CATHOU R. E., BUCHANAN J. M. Enzymatic synthesis of the methyl group of methionine. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli. J Biol Chem. 1961 Apr;236:1095–1101. [PubMed] [Google Scholar]
  15. HOTCHKISS R. D., EVANS A. H. Fine structure of a genetically modified enzyme as revealed by relative affinities for modified substrate. Fed Proc. 1960 Dec;19:912–925. [PubMed] [Google Scholar]
  16. KATZEN H. M., BUCHANAN J. M. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. 8. REPRESSION-DEREPRESSION, PURIFICATION, AND PROPERTIES OF 5,10-METHYLENETETRAHYDROFOLATE REDUCTASE FROM ESCHERICHIA COLI. J Biol Chem. 1965 Feb;240:825–835. [PubMed] [Google Scholar]
  17. Kaplan M. M., Flavin M. Cystathionine gamma-synthetase of Salmonella. Catalytic properties of a new enzyme in bacterial methionine biosynthesis. J Biol Chem. 1966 Oct 10;241(19):4463–4471. [PubMed] [Google Scholar]
  18. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leedom J. M., Ivler D., Mathies A. W., Thrupp L. D., Portnoy B., Wehrle P. F. Importance of sulfadiazine resistance in meningococcal disease in civilians. N Engl J Med. 1965 Dec 23;273(26):1395–1401. doi: 10.1056/NEJM196512232732601. [DOI] [PubMed] [Google Scholar]
  20. MILLAR J. W., SIESS E. E., FELDMAN H. A., SILVERMAN C., FRANK P. IN VIVO AND IN VITRO RESISTANCE TO SULFADIAZINE IN STRAINS OF NEISSERIA MENINGITIDIS. JAMA. 1963 Oct 12;186:139–141. doi: 10.1001/jama.1963.63710020008016. [DOI] [PubMed] [Google Scholar]
  21. Oakberg E. F., Luria S. E. Mutations to Sulfonamide Resistance in STAPHYLOCOCCUS AUREUS. Genetics. 1947 May;32(3):249–261. doi: 10.1093/genetics/32.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PATO M. L., BROWN G. M. MECHANISMS OF RESISTANCE OF ESCHERICHIA COLI TO SULFONAMIDES. Arch Biochem Biophys. 1963 Dec;103:443–448. doi: 10.1016/0003-9861(63)90435-1. [DOI] [PubMed] [Google Scholar]
  23. REYN A. LABORATORY DIAGNOSIS OF GONOCOCCAL INFECTIONS. Bull World Health Organ. 1965;32:449–469. [PMC free article] [PubMed] [Google Scholar]
  24. REYN A. Sensitivity of N. gonorrhoeae to antibiotics. Br J Vener Dis. 1961 Jun;37:145–157. doi: 10.1136/sti.37.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rowbury R. J., Woods D. D. The regulation of cystathionine formation in Escherichia coli. J Gen Microbiol. 1966 Jan;42(1):155–163. doi: 10.1099/00221287-42-1-155. [DOI] [PubMed] [Google Scholar]
  26. SICARD A. M. A NEW SYNTHETIC MEDIUM FOR DIPLOCOCCUS PNEUMONIAE, AND ITS USE FOR THE STUDY OF RECIPROCAL TRANSFORMATIONS AT THE AMIA LOCUS. Genetics. 1964 Jul;50:31–44. doi: 10.1093/genetics/50.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Singer S., Elion G. B., Hitchings G. H. Resistance to inhibitors of dihydrofolate reductase in strains of Lactobacillus casei and Proteus vulgaris. J Gen Microbiol. 1966 Feb;42(2):185–196. doi: 10.1099/00221287-42-2-185. [DOI] [PubMed] [Google Scholar]
  28. WILLCOX R. R. Treatment problems of gonorrhoea. Bull World Health Organ. 1961;24:307–319. [PMC free article] [PubMed] [Google Scholar]
  29. WOLF B., HOTCHKISS R. D. Genetically modified folic acid synthesizing enzymes of pneumococcus. Biochemistry. 1963 Jan-Feb;2:145–150. doi: 10.1021/bi00901a026. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES