Abstract
Deoxyribonucleic acids (DNA's) extracted from organisms presently placed in the genus Brucella (B. abortus, B. melitensis, B. neotomae, and B. suis) possessed very similar polynucleotide sequences. Unlabeled, single-stranded DNA fragments from B. abortus, B. melitensis, B. neotomae, and B. suis were equally effective in competing with the interaction of corresponding radiolabeled, single-stranded DNA fragments with their homologous DNA-agars. Unlabeled fragments of B. ovis, however, did not compete as effectively as the homologous, unlabeled DNA's, and this organism, therefore, had a detectably different polynucleotide composition. The mole percentages of guanine plus cytosine in Brucella DNA's (56 to 58%) were also similar. DNA's from Francisella tularensis, Escherichia coli, and the slow loris did not compete.
Full text
PDF![444](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358f/252038/9b07f105a3a0/jbacter00400-0208.png)
![445](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358f/252038/96956815aaa7/jbacter00400-0209.png)
![446](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358f/252038/bf833faa24f5/jbacter00400-0210.png)
![447](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358f/252038/19bc51b8679c/jbacter00400-0211.png)
![448](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358f/252038/4a43a05d9b3e/jbacter00400-0212.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNS K. I., THOMAS C. A., Jr ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM HEMOPHILUS INFLUENZAE. J Mol Biol. 1965 Mar;11:476–490. doi: 10.1016/s0022-2836(65)80004-3. [DOI] [PubMed] [Google Scholar]
- BOLTON E. T., McCARTHY B. J. A general method for the isolation of RNA complementary to DNA. Proc Natl Acad Sci U S A. 1962 Aug;48:1390–1397. doi: 10.1073/pnas.48.8.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUDDLE M. B. Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. J Hyg (Lond) 1956 Sep;54(3):351–364. doi: 10.1017/s0022172400044612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner D. J., Martin M. A., Hoyer B. H. Deoxyribonucleic acid homologies among some bacteria. J Bacteriol. 1967 Aug;94(2):486–487. doi: 10.1128/jb.94.2.486-487.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COWIE D. B., MCCARTHY B. J. HOMOLOGY BETWEEN BACTERIOPHAGE LAMBDA DNA AND E. COLI DNA. Proc Natl Acad Sci U S A. 1963 Sep;50:537–543. doi: 10.1073/pnas.50.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerloff R. K., Ritter D. B., Watson R. O. DNA homology between the meningopneumonitis agent and related microorganisms. J Infect Dis. 1966 Apr;116(2):197–202. doi: 10.1093/infdis/116.2.197. [DOI] [PubMed] [Google Scholar]
- HYER B. H., MCCARTHY B. J., BOLTON E. T. A MOLECULAR APPROACH IN THE SYSTEMATICS OF HIGHER ORGANISMS. DNA INTERACTIONS PROVIDE A BASIS FOR DETECTING COMMON POLYNUCLEOTIDE SEQUENCES AMONG DIVERSE ORGANISMS. Science. 1964 May 22;144(3621):959–967. doi: 10.1126/science.144.3621.959. [DOI] [PubMed] [Google Scholar]
- Heberlein G. T., De Ley J., Tijtgat R. Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J Bacteriol. 1967 Jul;94(1):116–124. doi: 10.1128/jb.94.1.116-124.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingsbury D. T. Deoxyribonucleic acid homologies among species of the genus Neisseria. J Bacteriol. 1967 Oct;94(4):870–874. doi: 10.1128/jb.94.4.870-874.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACY S., GREEN M. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION. VII. HOMOLOGY BETWEEN DNA'S OF TUMORIGENIC AND NONTUMORIGENIC HUMAN ADENOVIRUSES. Proc Natl Acad Sci U S A. 1964 Oct;52:1053–1059. doi: 10.1073/pnas.52.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- MCCARTHY B. J., BOLTON E. T. An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A. 1963 Jul;50:156–164. doi: 10.1073/pnas.50.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCARTHY B. J., HOYER B. H. IDENTITY OF DNA AND DIVERSITY OF MESSENGER RNA MOLECULES IN NORMAL MOUSE TISSUES. Proc Natl Acad Sci U S A. 1964 Oct;52:915–922. doi: 10.1073/pnas.52.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin M. A., Hoyer B. H. Thermal stabilities and species specificities of reannealed animal deoxyribonucleic acids. Biochemistry. 1966 Aug;5(8):2706–2713. doi: 10.1021/bi00872a030. [DOI] [PubMed] [Google Scholar]
- McGee Z. A., Rogul M., Falkow S., Wittler R. G. The relationship of Mycoplasma pneumoniae (Eaton agent) to Streptococcus MG: application of genetic tests to determine relatedness of L-forms and PPLO to bacteria. Proc Natl Acad Sci U S A. 1965 Aug;54(2):457–461. doi: 10.1073/pnas.54.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritter D. B., Gerloff R. K. Deoxyribonucleic acid hybridization among some species of the genus Pasteurella. J Bacteriol. 1966 Dec;92(6):1838–1839. doi: 10.1128/jb.92.6.1838-1839.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- STOENNER H. G., LACKMAN D. B. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am J Vet Res. 1957 Oct;18(69):947–951. [PubMed] [Google Scholar]