Abstract
Enterobacter cloacae (strain DF13) was found to produce a bacteriocin which could be induced by mitomycin C. In the supernatant fluid of the induced culture phagelike particles were found. The bacteriocin was partially purified from induced cultures by ammonium sulfate precipitation and gel-filtration on Sephadex G-150. Ultraviolet-absorbing material was eluted from the Sephadex column in three fractions. The biological activity was mainly present in the second fraction and is associated with a protein with a molecular weight of about 61,000. The phagelike particles were found in the first fraction and show no biological activity. Upon conjugation of E. cloacae strain DF13 with another strain of the same species and with Escherichia coli K-12S, the ability to produce bacteriocin was transferred. The new bacteriocinogenic strain produced bacteriocin, which could not be distinguished from that produced by E. cloacae strain DF13. Although transfer of the bacteriocinogenic factor often occurred together with transfer of the ability to produce phagelike particles, it was shown that these two factors are two separate genetic entities. In addition to a bacteriocinogenic factor, E. cloacae strain DF13 was found to carry two other transferable plasmids: one determining resistance against streptomycin and sulfanilamide and another determining resistance against penicillin.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley D. E. The morphology and physiology of bacteriophages as revealed by the electron microscope. J R Microsc Soc. 1965 Sep;84(3):257–316. [PubMed] [Google Scholar]
- CLOWES R. C. TRANSFERT G'EN'ETIQUE DES FACTEURS COLICINOG'ENES. Ann Inst Pasteur (Paris) 1964 Nov;107:SUPPL–SUPPL:92. [PubMed] [Google Scholar]
- COHEN G. H., JOHNSTONE D. B. Acid production by Azotobacter vinelandii. Nature. 1963 Apr 13;198:211–211. doi: 10.1038/198211a0. [DOI] [PubMed] [Google Scholar]
- DE HAAN P. G., STOUTHAMER A. H., FELIX H. S., MOL A. K. TRANSFER OF F' FROM ESCHERICHIA COLI K 12 TO ESCHERICHIA COLI B AND TO STRAINS OF PARACOLOBACTER AND KLEBSIELLA. Antonie Van Leeuwenhoek. 1963;29:407–420. doi: 10.1007/BF02046093. [DOI] [PubMed] [Google Scholar]
- Datta N., Lawn A. M., Meynell E. The relationship of F type piliation and F phage sensitivity to drug resistance transfer in R+F- Escherichia coli K 12. J Gen Microbiol. 1966 Nov;45(2):365–376. doi: 10.1099/00221287-45-2-365. [DOI] [PubMed] [Google Scholar]
- ENDO H., AYABE K., AMAKO K., TAKEYA K. INDUCIBLE PHAGE OF ESCHERICHIA COLI 15. Virology. 1965 Mar;25:469–471. doi: 10.1016/0042-6822(65)90067-x. [DOI] [PubMed] [Google Scholar]
- FREDERICQ P. COLICINES ET AUTRES BACTERIOCINES. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1963;37:114–161. [PubMed] [Google Scholar]
- FREDERICQ P. Colicins. Annu Rev Microbiol. 1957;11:7–22. doi: 10.1146/annurev.mi.11.100157.000255. [DOI] [PubMed] [Google Scholar]
- Fredericq P. On the nature of colicinogenic factors: a review. J Theor Biol. 1963 Mar;4(2):159–165. doi: 10.1016/0022-5193(63)90024-9. [DOI] [PubMed] [Google Scholar]
- HOLLAND I. B. The purification and properties of megacin, a bacteriocin from Bacillus megaterium. Biochem J. 1961 Mar;78:641–648. doi: 10.1042/bj0780641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishii S. I., Nishi Y., Egami F. The fine structure of a pyocin. J Mol Biol. 1965 Sep;13(2):428–431. doi: 10.1016/s0022-2836(65)80107-3. [DOI] [PubMed] [Google Scholar]
- Ivanovics G. BACTERIOCINS AND BACTERIOCIN-LIKE SUBSTANCES. Bacteriol Rev. 1962 Jun;26(2 Pt 1):108–118. [PMC free article] [PubMed] [Google Scholar]
- KAGEYAMA M., EGAMI F. On the purification and some properties of a pyocin, a bacteriocin produced by Pseudomonas aeruginosa. Life Sci. 1962 Sep;1:471–476. doi: 10.1016/0024-3205(62)90055-3. [DOI] [PubMed] [Google Scholar]
- KELLENBERGER E., KELLENBERGER G. Etude de souches colicinogènes au microscope électronique. Schweiz Z Pathol Bakteriol. 1956;19(5):582–597. [PubMed] [Google Scholar]
- Kingsbury D. T. Bacteriocin production by strains of Neisseria meningitidis. J Bacteriol. 1966 May;91(5):1696–1699. doi: 10.1128/jb.91.5.1696-1699.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- OZEKI H., STOCKER B. A., SMITH S. M. Transmission of colicinogeny between strains of Salmonella typhimurium grown together. J Gen Microbiol. 1962 Sep;28:671–687. doi: 10.1099/00221287-28-4-671. [DOI] [PubMed] [Google Scholar]
- REEVES P. THE BACTERIOCINS. Bacteriol Rev. 1965 Mar;29:24–45. doi: 10.1128/br.29.1.24-45.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANDOVAL H. K., REILLY H. C., TANDLER B. COLICIN 15: POSSIBLY A DEFECTIVE BACTERIOPHAGE. Nature. 1965 Jan 30;205:522–523. doi: 10.1038/205522a0. [DOI] [PubMed] [Google Scholar]
- SEAMAN E., TARMY E., MARMUR J. INDUCIBLE PHAGES OF BACILLUS SUBTILIS. Biochemistry. 1964 May;3:607–613. doi: 10.1021/bi00893a001. [DOI] [PubMed] [Google Scholar]
- STICKLER D. J., TUCKER R. G., KAY D. BACTERIOPHAGE-LIKE PARTICLES RELEASED FROM BACILLUS SUBTILIS AFTER INDUCTION WITH HYDROGEN PEROXIDE. Virology. 1965 May;26:142–145. doi: 10.1016/0042-6822(65)90035-8. [DOI] [PubMed] [Google Scholar]
- Stouthamer A. H., Tieze G. A. Bacteriocin production by members of the genus Klebsiella. Antonie Van Leeuwenhoek. 1966;32(2):171–182. doi: 10.1007/BF02097457. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Pangborn J., Kilgore W. W. Filamentous cells of Escherichia coli formed in the presence of mitomycin. J Bacteriol. 1967 Feb;93(2):683–688. doi: 10.1128/jb.93.2.683-688.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]