Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Mar;95(3):801–810. doi: 10.1128/jb.95.3.801-810.1968

Synthesis of Bacterial Flagella I. Requirement for Protein and Ribonucleic Acid Synthesis During Flagellar Regeneration in Bacillus subtilis

K Dimmitt 1,2, S Bradford 1,2, M Simon 1,2
PMCID: PMC252096  PMID: 4966826

Abstract

A relatively simple immunochemical procedure for estimating flagellar protein was developed. This procedure involved measuring the binding of purified, radioactively labeled, antiflagellar antibodies to bacteria. The assay was used to determine the requirements for ribonucleic acid (RNA) and protein synthesis during flagellar regeneration in Bacillus subtilis. Immediate inhibition of flagella development was observed when chloramphenical or puromycin was added to cells. This inhibition indicated the absence of a large pool of flagella precursors that could be assembled in the absence of protein synthesis. When the cells were starved for uracil or treated with actinomycin D to inhibit RNA synthesis, the ability of the cells to regenerate flagella decayed with a half-life of 5.5 min. When B. subtilis auxotrophs were starved for tryptophan, they continued to synthesize flagella, although this process was also inhibited by actinomycin D. On the basis of these results, we concluded that (i) the system involved in flagellar regeneration does not have unusual metabolic stability, (ii) regeneration requires both concomitant protein and RNA syntheses, and (iii) B. subtilis continues to synthesize messenger RNA during tryptophan starvation.

Full text

PDF
801

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAM D., KOFFLER H. IN VITRO FORMATION OF FLAGELLA-LIKE FILAMENTS AND OTHER STRUCTURES FROM FLAGELLIN. J Mol Biol. 1964 Jul;9:168–185. doi: 10.1016/s0022-2836(64)80098-x. [DOI] [PubMed] [Google Scholar]
  2. Dutton A., Adams M., Singer S. J. Bifunctional imidoesters as cross-linking reagents. Biochem Biophys Res Commun. 1966 Jun 13;23(5):730–739. doi: 10.1016/0006-291x(66)90462-1. [DOI] [PubMed] [Google Scholar]
  3. Edlin G., Neuhard J. Regulation of nucleoside triphosphate pools in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):225–230. doi: 10.1016/0022-2836(67)90328-2. [DOI] [PubMed] [Google Scholar]
  4. Freedman M. H., Slobin L. I., Robbins J. B., Sela M. Soluble antigen-antibody complexes as intermediates in the purification of antibodies in 8 molar urea. Arch Biochem Biophys. 1966 Sep 26;116(1):82–91. doi: 10.1016/0003-9861(66)90015-4. [DOI] [PubMed] [Google Scholar]
  5. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallant J., Cashel M. On the mechanism of amino acid control of ribonucleic acid biosynthesis. J Mol Biol. 1967 May 14;25(3):545–553. doi: 10.1016/0022-2836(67)90205-7. [DOI] [PubMed] [Google Scholar]
  7. Grant G. F., Simon M. Use of radioactive antibodies for characterizing antigens and application to the study of flagella synthesis. J Bacteriol. 1968 Jan;95(1):81–86. doi: 10.1128/jb.95.1.81-86.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Joys T. M., Frankel R. W. Genetic control of flagellation in Bacillus subtilis. J Bacteriol. 1967 Jul;94(1):32–37. doi: 10.1128/jb.94.1.32-37.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KERRIDGE D. FLAGELLAR SYNTHESIS IN SALMONELLA TYPHIMURIUM: THE INCORPORATION OF ISOTOPICALLY-LABELLED AMINO ACIDS INTO FLAGELLIN. J Gen Microbiol. 1963 Oct;33:63–76. doi: 10.1099/00221287-33-1-63. [DOI] [PubMed] [Google Scholar]
  10. KERRIDGE D. Synthesis of flagella by amino acid-requiring mutants of Salmonella typhimurium. J Gen Microbiol. 1959 Aug;21:168–179. doi: 10.1099/00221287-21-1-168. [DOI] [PubMed] [Google Scholar]
  11. LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARTINEZ R. J. A METHOD FOR THE PURIFICATION OF BACTERIAL FLAGELLA BY ION EXCHANGE CHROMATOGRAPHY. J Gen Microbiol. 1963 Oct;33:115–120. doi: 10.1099/00221287-33-1-115. [DOI] [PubMed] [Google Scholar]
  13. Martinez R. J. The formation of bacterial flagella. II. The relative stability of messenger RNA for flagellin biosynthesis. J Mol Biol. 1966 May;17(1):10–17. doi: 10.1016/s0022-2836(66)80090-6. [DOI] [PubMed] [Google Scholar]
  14. McClatchy J. K., Rickenberg H. V. Heterogeneity of the stability of messenger ribonucleic acid in Salmonella typhimurium. J Bacteriol. 1967 Jan;93(1):115–121. doi: 10.1128/jb.93.1.115-121.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morris D. W., DeMoss J. A. Polysome transitions and the regulation of ribonucleic acid synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):262–268. doi: 10.1073/pnas.56.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. STOCKER B. A., CAMPBELL J. C. The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration. J Gen Microbiol. 1959 Jun;20(3):670–685. doi: 10.1099/00221287-20-3-670. [DOI] [PubMed] [Google Scholar]
  17. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES