Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Mar;95(3):867–875. doi: 10.1128/jb.95.3.867-875.1968

Fractionation of Transformable Bacteria from Competent Cultures of Bacillus subtilis on Renografin Gradients

Florence Haseltine Cahn 1, Maurice S Fox 1
PMCID: PMC252104  PMID: 4966830

Abstract

A population of Bacillus subtilis can be fractionated into at least two components on the basis of their buoyant densities on a Renografin gradient. In competent cultures, most, and perhaps all, of the competent bacteria appear in the lighter fraction which composes 2 to 10% of the bulk population. These “lighter” bacteria are the only bacteria capable of incorporating transforming deoxyribonucleic acid.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODMER W. F., GANESAN A. T. BIOCHEMICAL AND GENETIC STUDIES OF INTEGRATION AND RECOMBINATION IN BACILLUS SUBTILIS TRANSFORMATION. Genetics. 1964 Oct;50:717–738. doi: 10.1093/genetics/50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bodmer W. F. Recombination and integration in Bacillus subtilis transformation: involvement of DNA synthesis. J Mol Biol. 1965 Dec;14(2):534–557. doi: 10.1016/s0022-2836(65)80203-0. [DOI] [PubMed] [Google Scholar]
  4. Chilton M. D. Transforming Activity in Both Complementary Strands of Bacillus subtilis DNA. Science. 1967 Aug 18;157(3790):817–819. doi: 10.1126/science.157.3790.817. [DOI] [PubMed] [Google Scholar]
  5. ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
  6. Eberle H., Lark K. G. Chromosome replication in Bacillus subtilis cultures growing at different rates. Proc Natl Acad Sci U S A. 1967 Jan;57(1):95–101. doi: 10.1073/pnas.57.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol. 1961 Jul;44:1201–1227. doi: 10.1085/jgp.44.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hotchkiss R. D., Marmur J. DOUBLE MARKER TRANSFORMATIONS AS EVIDENCE OF LINKED FACTORS IN DESOXYRIBONUCLEATE TRANSFORMING AGENTS. Proc Natl Acad Sci U S A. 1954 Feb;40(2):55–60. doi: 10.1073/pnas.40.2.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. NESTER E. W. PENICILLIN RESISTANCE OF COMPETENT CELLS IN DEOXYRIBONUCLEIC ACID TRANSFORMATION OF BACILLUS SUBTILIS. J Bacteriol. 1964 Apr;87:867–875. doi: 10.1128/jb.87.4.867-875.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NESTER E. W., STOCKER B. A. BIOSYNTHETIC LATENCY IN EARLY STAGES OF DEOXYRIBONUCLEIC ACIDTRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1963 Oct;86:785–796. doi: 10.1128/jb.86.4.785-796.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tamir H., Gilvarg C. Density gradient centrifugation for the separation of sporulating forms of bacteria. J Biol Chem. 1966 Mar 10;241(5):1085–1090. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES