Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Mar;95(3):991–997. doi: 10.1128/jb.95.3.991-997.1968

Selection of Temperature-sensitive Activating Enzyme Mutants in Escherichia coli

Samuel Kaplan 1, Deborah Anderson 1
PMCID: PMC252122  PMID: 4868365

Abstract

A method based on temperature-conditional resistance to thymineless death has been designed to facilitate the isolation of amino acid-activating enzyme mutants. This method may be modified to obtain a greater or lesser proportion of activating enzyme mutants. In the latter instance, an increased proportion of temperature-sensitive macromolecule mutants of other types is obtained. Additional uses of this procedure are discussed.

Full text

PDF
991

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown K. D., Doy C. H. Control of three isoenzymic 7-phospho-2-oxo-3-deoxy-Darabino-heptonate-D-erythrose-4-phosphate lyases of Escherichia coli W and derived mutants by repressive and "inductive" effects of the aromatic amino acids. Biochim Biophys Acta. 1966 Apr 12;118(1):157–172. doi: 10.1016/s0926-6593(66)80153-4. [DOI] [PubMed] [Google Scholar]
  2. EDLIN G. AMINO ACID REGULATION OF BACTERIOPHAGE RNA SYNTHESIS. J Mol Biol. 1965 Jun;12:356–362. doi: 10.1016/s0022-2836(65)80259-5. [DOI] [PubMed] [Google Scholar]
  3. EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KORN D., WEISSBACH A. Thymineless induction in Escherichia coli K12 (lambda). Biochim Biophys Acta. 1962 Nov 26;61:775–790. doi: 10.1016/0926-6550(62)90060-9. [DOI] [PubMed] [Google Scholar]
  6. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lark K. G. Regulation of chromosome replication and segregation in bacteria. Bacteriol Rev. 1966 Mar;30(1):3–32. doi: 10.1128/br.30.1.3-32.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morris D. W., DeMoss J. A. Polysome transitions and the regulation of ribonucleic acid synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):262–268. doi: 10.1073/pnas.56.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NEIDHARDT F. C. Properties of a bacterial mutant lacking amino acid control of RNA synthesis. Biochim Biophys Acta. 1963 Mar 26;68:365–379. doi: 10.1016/0006-3002(63)90158-6. [DOI] [PubMed] [Google Scholar]
  11. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OKAGAKI H., TSUBOTA Y., SIBATANI A. Unbalanced growth and bacterial death in thymine-deficient and ultraviolet irradiated Escherichia coli. J Bacteriol. 1960 Dec;80:762–771. doi: 10.1128/jb.80.6.762-771.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rolfe R. On the mechanism of thymineless death in Bacillus subtilis. Proc Natl Acad Sci U S A. 1967 Jan;57(1):114–121. doi: 10.1073/pnas.57.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roth J. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium II. Histidine regulatory mutants having altered histidyl-tRNA synthetase. J Mol Biol. 1966 Dec 28;22(2):325–333. doi: 10.1016/0022-2836(66)90135-5. [DOI] [PubMed] [Google Scholar]
  15. SOMERVILLE R. L., YANOFSKY C. STUDIES ON THE REGULATION OF TRYPTOPHAN BIOSYNTHESIS IN ESCHERICHIA COLI. J Mol Biol. 1965 Apr;11:747–759. doi: 10.1016/s0022-2836(65)80032-8. [DOI] [PubMed] [Google Scholar]
  16. Wachsman J. T., Hogg L. Use of thymineless death to enrich for doubly auxotrophic mutants of Bacillus megaterium. J Bacteriol. 1964 May;87(5):1118–1122. doi: 10.1128/jb.87.5.1118-1122.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES