Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 May;95(5):1727–1731. doi: 10.1128/jb.95.5.1727-1731.1968

Galactose Transport in Saccharomyces cerevisiae I. Nonmetabolized Sugars as Substrates and Inducers of the Galactose Transport System

Vincent P Cirillo 1
PMCID: PMC252203  PMID: 5650080

Abstract

The inducible galactose transport system in bakers' yeast carries out the facilitated diffusion of the nonmetabolized galactose analogues d-fucose and l-arabinose. This capacity depends on the activity of the Ga 2 gene. In some strains, d-fucose and l-arabinose are also gratuitous inducers. Mutants in which the inducibility of the galactose pathway enzymes is altered show a parallel alteration of the inducibility of the galactose transport system.

Full text

PDF
1727

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CIRILLO V. P. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962 Sep;84:485–491. doi: 10.1128/jb.84.3.485-491.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cirillo V. P. Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast. J Bacteriol. 1968 Feb;95(2):603–611. doi: 10.1128/jb.95.2.603-611.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DISCHE Z., DEVI A. A new colorimetric method for the determination of ketohexoses in presence of aldoses, ketoheptoses and ketopentoses. Biochim Biophys Acta. 1960 Mar 25;39:140–144. doi: 10.1016/0006-3002(60)90129-3. [DOI] [PubMed] [Google Scholar]
  5. DOUGLAS H. C., CONDIE F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. 1954 Dec;68(6):662–670. doi: 10.1128/jb.68.6.662-670.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas H. C., Hawthorne D. C. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics. 1966 Sep;54(3):911–916. doi: 10.1093/genetics/54.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Englesberg E., Irr J., Power J., Lee N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol. 1965 Oct;90(4):946–957. doi: 10.1128/jb.90.4.946-957.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KALCKAR H. M., SUNDARARAJANTA Regulatory mechanisms in the synthesis of enzymes of galactose metabolism. II. Genetic defects in galactokinase activity and their relations to its function. Cold Spring Harb Symp Quant Biol. 1961;26:227–231. doi: 10.1101/sqb.1961.026.01.027. [DOI] [PubMed] [Google Scholar]
  11. KOCH A. L. THE ROLE OF PERMEASE IN TRANSPORT. Biochim Biophys Acta. 1964 Jan 27;79:177–200. doi: 10.1016/0926-6577(64)90050-6. [DOI] [PubMed] [Google Scholar]
  12. Kennedy E. P., Scarborough G. A. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport. Proc Natl Acad Sci U S A. 1967 Jul;58(1):225–228. doi: 10.1073/pnas.58.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koch A. L. Kinetics of permease catalyzed transport. J Theor Biol. 1967 Feb;14(2):103–130. doi: 10.1016/0022-5193(67)90109-9. [DOI] [PubMed] [Google Scholar]
  14. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. OKADA H., HALVORSON H. O. UPTAKE OF ALPHA-THIOETHYL D-GLUCOPYRANOSIDE BY SACCHAROMYCES CEREVISIAE. I. THE GENETIC CONTROL OF FACILITATED DIFFUSION AND ACTIVE TRANSPORT. Biochim Biophys Acta. 1964 Mar 16;82:538–546. doi: 10.1016/0304-4165(64)90445-3. [DOI] [PubMed] [Google Scholar]
  16. Wilkins P. O., Cirillo V. P. Sorbose counterflow as a measure of intracellular glucose in baker's yeast. J Bacteriol. 1965 Dec;90(6):1605–1610. doi: 10.1128/jb.90.6.1605-1610.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wu H. C. Role of the galactose transport system in the establishment of endogenous induction of the galactose operon in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):213–223. doi: 10.1016/0022-2836(67)90327-0. [DOI] [PubMed] [Google Scholar]
  18. YARMOLINSKY M. B., JORDAN E., WIESMEYER H. Regulatory mechanisms in the synthesis of enzymes of galactose metabolism. I. Coordinate repression and de-repression of the "galactose sequence". Cold Spring Harb Symp Quant Biol. 1961;26:217–226. doi: 10.1101/sqb.1961.026.01.026. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES