Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Jul;96(1):139–145. doi: 10.1128/jb.96.1.139-145.1968

Derepression of β-Galactosidase Synthesis in Escherichia coli K-12 by p-Fluorophenylalanine

Soosang Kang 1, Paul Rockey 1, Alvin Markovitz 1
PMCID: PMC252264  PMID: 4874301

Abstract

p-Fluorophenylalanine (FPA) derepresses β-galactosidase synthesis at 35 C but not at 25 C in Escherichia coli K-12, strain MC132 (lac I1,2), a strain with a temperature-sensitive lac repressor. In contrast, strain MC130 (lac I+) is not derepressed by FPA at 35 C. Temperature-shift experiments with strain MC132 in the presence of FPA and other reagents (isopropyl-1-thio-β-d-galactoside or chloramphenicol) are consistent with the following mechanism. FPA is incorporated into the genetically altered lac repressor at all temperatures. This further alteration due to incorporation of analogue makes the lac repressor protein inactive at 35 C but active at 25 C. Once an active tertiary structure is formed at 25 C, it is stable at 35 C. However, the inactive tertiary structure of the FPA-containing repressor can assume an active tertiary structure when the temperature is shifted from 35 to 25 C. In the discussion of the results, “inactive tertiary structure” is equated with “monomers” and “active tertiary structure” with oligomers.

Full text

PDF
139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALPERS D. H., TOMKINS G. M. THE ORDER OF INDUCTION AND DEINDUCTION OF THE ENZYMES OF THE LACTOSE OPERON IN E. COLI. Proc Natl Acad Sci U S A. 1965 Apr;53:797–802. doi: 10.1073/pnas.53.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GAREN A., ECHOLS H. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1398–1402. doi: 10.1073/pnas.48.8.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gilbert W., Müller-Hill B. Isolation of the lac repressor. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1891–1898. doi: 10.1073/pnas.56.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilbert W., Müller-Hill B. The lac operator is DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2415–2421. doi: 10.1073/pnas.58.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HORIUCHI T., NOVICK A. A thermolabile repression system. Cold Spring Harb Symp Quant Biol. 1961;26:247–248. doi: 10.1101/sqb.1961.026.01.030. [DOI] [PubMed] [Google Scholar]
  6. HOWARD-FLANDERS P., SIMSON E., THERIOT L. A LOCUS THAT CONTROLS FILAMENT FORMATION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI K-12. Genetics. 1964 Feb;49:237–246. doi: 10.1093/genetics/49.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  8. Kang S., Markovitz A. Derepression of alkaline phosphatase in Escherichia coli by p-fluorophenylalanine. J Bacteriol. 1967 Jul;94(1):87–91. doi: 10.1128/jb.94.1.87-91.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kang S., Markovitz A. Induction of capsular polysaccharide synthesis by rho-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. J Bacteriol. 1967 Feb;93(2):584–591. doi: 10.1128/jb.93.2.584-591.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kepes A. Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim Biophys Acta. 1967 Mar 29;138(1):107–123. doi: 10.1016/0005-2787(67)90591-6. [DOI] [PubMed] [Google Scholar]
  11. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  12. MARKOVITZ A. REGULATORY MECHANISMS FOR SYNTHESIS OF CAPSULAR POLYSACCHARIDE IN MUCOID MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1964 Feb;51:239–246. doi: 10.1073/pnas.51.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MUNIER R. L., SARRAZIN G. ETUDE DE L'ORIGINE DES DIFF'ERENCES DE STABILIT'E PR'ESENT'EES PAR LA BETA-GALACTOSIDASE NORMALE ET LA BETA-GALACTOSIDASE DONT TOUS LES GROUPES TYROSINE SONT REMPLAC'ES PAR LA 3-FLUOROTYROSINE. C R Hebd Seances Acad Sci. 1964 Jul 27;259:937–940. [PubMed] [Google Scholar]
  14. MUNIER R., COHEN G. N. Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochim Biophys Acta. 1959 Feb;31(2):378–391. doi: 10.1016/0006-3002(59)90011-3. [DOI] [PubMed] [Google Scholar]
  15. Markovitz A., Baker B. Suppression of radiation sensitivity and capsular polysaccharide synthesis in Escherichia coli K-12 by ochre suppressors. J Bacteriol. 1967 Aug;94(2):388–395. doi: 10.1128/jb.94.2.388-395.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Markovitz A., Rosenbaum N. A regulator gene that is dominant on an episome and recessive on a chromosome. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1084–1091. doi: 10.1073/pnas.54.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RICHMOND M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962 Dec;26:398–420. doi: 10.1128/br.26.4.398-420.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SADLER J. R., NOVICK A. THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. J Mol Biol. 1965 Jun;12:305–327. doi: 10.1016/s0022-2836(65)80255-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES