Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):580–588. doi: 10.1128/jb.96.3.580-588.1968

Deoxyribonucleic Acid Base Composition of the Genus Lactobacillus

Francis Gasser 1, Manley Mandel 2
PMCID: PMC252345  PMID: 4979096

Abstract

Deoxyribonucleic acids of 45 strains of Lactobacillus and 5 strains of Bifidobacterium which had been analyzed for base composition by chromatographic means were examined at equilibrium in a CsCl density gradient. Regression analysis showed that there have been systematic errors involved in the estimation of guanine plus cytosine (GC) content by the chemical method, and that the relation between buoyant density and base composition is indeed linear and best fitted by the equation GC = 10.309 (ρ−1.662), which compares well in slope with the equation of Schildkraut, Marmur, and Doty. With the improved data obtained in this study, the specific groupings of the species of both genera were reevaluated.

Full text

PDF
580

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANTONI C., HILL L. R., SILVESTRI L. G. DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME MEMBERS OF THE SUBGENERA BETABACTERIUM AND STREPTOBACTERIUM. Appl Microbiol. 1965 Jul;13:631–633. doi: 10.1128/am.13.4.631-633.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantoni C. Composizione in basi degli acidi desossiribonucleinici di L. plantarum. Boll Ist Sieroter Milan. 1966 May-Jun;45(5-6):309–311. [PubMed] [Google Scholar]
  3. Gasser F., Sebald M. Composition en bases nucléiques des bactéries du genre Lactobacillus. Ann Inst Pasteur (Paris) 1966 Feb;110(2):261–275. [PubMed] [Google Scholar]
  4. Hill L. R. An index to deoxyribonucleic acid base compositions of bacterial species. J Gen Microbiol. 1966 Sep;44(3):419–437. doi: 10.1099/00221287-44-3-419. [DOI] [PubMed] [Google Scholar]
  5. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  6. Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas. J Gen Microbiol. 1966 May;43(2):273–292. doi: 10.1099/00221287-43-2-273. [DOI] [PubMed] [Google Scholar]
  7. Marmur J., Seaman E., Levine J. INTERSPECIFIC TRANSFORMATION IN BACILLUS. J Bacteriol. 1963 Feb;85(2):461–467. doi: 10.1128/jb.85.2.461-467.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rolfe R., Meselson M. THE RELATIVE HOMOGENEITY OF MICROBIAL DNA. Proc Natl Acad Sci U S A. 1959 Jul;45(7):1039–1043. doi: 10.1073/pnas.45.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosypalová A., Bohácek J., Rosypal S. Deoxyribonucleic acid base composition and taxonomy of violet-pigmented cocci. Antonie Van Leeuwenhoek. 1966;32(1):105–112. doi: 10.1007/BF02097450. [DOI] [PubMed] [Google Scholar]
  10. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  11. SEBALD M., GASSER F., WERNER H. TENEUR GC PERCENTAGE ET CLASSIFICATION. APPLICATION AU GROUPE DES BIFIDOBACT'ERIES ET 'A QUELQUES GENRES VOISINS. Ann Inst Pasteur (Paris) 1965 Aug;109:251–269. [PubMed] [Google Scholar]
  12. SIGAL N., SENEZ J. C., LEGALL J., SEBALD M. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA. J Bacteriol. 1963 Jun;85:1315–1318. doi: 10.1128/jb.85.6.1315-1318.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SUEOKA N., MARMUR J., DOTY P., 2nd Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature. 1959 May 23;183(4673):1429–1431. doi: 10.1038/1831429a0. [DOI] [PubMed] [Google Scholar]
  14. Saunders G. F., Campbell L. L., Postgate J. R. Base composition of deoxyribonucleic acid of sulfate-reducing bacteria deduced from buoyant density measurements in cesium chloride. J Bacteriol. 1964 May;87(5):1073–1078. doi: 10.1128/jb.87.5.1073-1078.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schildkraut C. Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965;3(2):195–208. doi: 10.1002/bip.360030207. [DOI] [PubMed] [Google Scholar]
  16. Silvestri L. G., Hill L. R. Agreement Between Deoxyribonucleic Acid Base Composition and Taxometric Classification of Gram-Positive Cocci. J Bacteriol. 1965 Jul;90(1):136–140. doi: 10.1128/jb.90.1.136-140.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TONOMURA B., MALKIN R., RABINOWITZ J. C. DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF CLOSTRIDIAL SPECIES. J Bacteriol. 1965 May;89:1438–1439. doi: 10.1128/jb.89.5.1438-1439.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Werner H., Gasser F., Sebald M. DNS-Basenbestimmungen an 28 Bifidus-Stämmen und an Stämmen morphologisch ähnlicher Gattungen. Zentralbl Bakteriol Orig. 1965 Dec;198(4):504–516. [PubMed] [Google Scholar]
  19. de MAN J. Lactobacillus bulgaricus (Luerssen et Kuehn) Holland. Antonie Van Leeuwenhoek. 1960;26:77–80. doi: 10.1007/BF02538996. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES